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Preface

The main aims of this book are: to provide an introduction to the principles
of modelling as applied to longitudinal data from panel and related studies
with the necessary statistical theory; and to describe the application of these
principles to the analysis of a wide range of examples using the Sabre software
(http://sabre.lancs.ac.uk/).

This material on multivariate generalised linear mixed models arises from the
activities at the Economic and Social Research Council (ESRC) funded Colab-
oratory for Quantitative e-Social Science (CQeSS) at Lancaster University over
the period 2003-2008. Sabre is a program for the statistical analysis of multi-
process event/response sequences. These responses can take the form of binary,
ordinal, count and linear recurrent events. The response sequences can also be
of different types (e.g. linear (wages) and binary (trade union membership)).
Such multi-process data are common in many research areas, e.g. in the analysis
of work and life histories from the British Household Panel Survey or the Ger-
man Socio-Economic Panel Study where researchers often want to disentangle
state dependence (the effect of previous responses or related outcomes) from
any omitted effects that might be present in recurrent behaviour (e.g. unem-
ployment). Understanding of the need to disentangle these generic substantive
issues dates back to the study of accident proneness in the 1950s and has since
been discussed in many applied areas, including consumer behaviour and voting
behaviour.

Sabre can also be used to model collections of single sequences such as may
occur in medical trials on the number of headaches experienced over a sequence
of weeks, or in single-equation descriptions of cross-sectional clustered data such
as the educational attainment of children in schools.

Sabre is available in three forms: (1) stand-alone, (2) the R plugin, (3) the Stata
plugin (as discussed here) for Windows and Linux PCs. The stand-alone version
and the R plugin versions can be deployed in parallel on high performance
computers (HPCs) or computational grids running Linux.

The class of models that can be estimated by Sabre may be termed Multivariate
Generalised Linear Mixed Models (MGLMMs). These models have special fea-
tures to help them disentangle state dependence from the incidental parameters
(omitted or unobserved effects). The incidental parameters can be treated as

xv
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random or fixed. The random effects models can be estimated with standard
Gaussian quadrature or adaptive Gaussian quadrature. Even though the linear
model integral has a closed form solution, we do not use it. Current compu-
tational facilities on many desktop computers often make the delay involved in
using numerical integration for the linear model negligible for many small to
medium-sized data sets. For large problems, we can always use parallel Sabre
on a HPC or computational grid. ‘End effects’ can also be added to the models
to accommodate ‘stayers’ or ‘non-susceptibles’. The fixed effects algorithm we
have developed uses code for large sparse matrices from the Harwell Subroutine
Library, see http://www.cse.scitech.ac.uk/nag/hsl/.

Also included in Sabre is the option to undertake all the calculations using
increased accuracy. Numerical underflow and overflow often occur in the esti-
mation process for models with incidental parameters. We suppose that many
of the alternative software systems truncate their calculations without informing
the user when this happens as there is little discussion of this in their respective
user manuals.

This book is written in a way that we have found appropriate for some of
our short courses. The book starts with the simple linear two level random
effects model and gradually adds complexity with the two level random effects
binary and Poisson response models. We then review the generalised linear
model notation before illustrating a range of more substantively appropriate
random effects models, e.g. the three-level model, multivariate, endpoint, event
history and state dependence models. The MGLMMs are estimated using either
standard Gaussian quadrature or adaptive Gaussian quadrature. The book
also compares two level fixed and random effects linear models. Additional
information on Sabre commands, quadrature, model estimation and endogenous
variables are included in Appendix A.

Appendix B reviews some of the Stata commands needed to set up the data for
analysis using the Sabre in Stata plugin.

A separate booklet entitled "Exercises for sabreStata (Sabre in Stata)" is avail-
able from http://sabre.lancs.ac.uk/. This booklet contains the small data
sets and exercises that have been written to accompany this book. These ex-
ercises will run quickly on a desktop PC. To distinguish the different types of
exercise, we use a variety of suffixes. The ‘C’ suffix stands for Cross-sectional,
the ‘L’ suffix stands for Longitudinal, the ‘3L’ suffix stands for Three Level mod-
els; the ‘FO’ suffix stands for First Order in state dependence models, the ‘EP’
suffix stands for models which include Endpoints and the ‘FE’ suffix stands for
Fixed Effects. Some medium sized and large data sets for testing deployment
of Sabre on a Grid are available from http://sabre.lancs.ac.uk/.

Drafts of the chapters of this book were developed and revised in the process
of preparing and delivering short courses in ‘Statistical Modelling using Sabre’,
‘Multilevel Modelling’ and ‘Event History Analysis’ given at CQeSS and the
Department of Mathematics and Statistics at Lancaster University and else-
where. We are grateful to many of the students on these courses from a range of
backgrounds (e.g. computational science, social science) whose comments and
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criticisms improved these early drafts. We think that the book should serve as
a self-teaching manual for the applied quantitative social scientist.

If you have any suggestions as to how this book could be improved, for instance
by the addition of other material, could you please let us know via the Sabre
mailing list, sabre@lancaster.ac.uk.
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Chapter 1

Linear Models I

1.1 Random Effects ANOVA

The simplest multilevel model is equivalent to a one-way analysis of variance
with random effects in which there are no explanatory variables. This model
contains only random variation between the level-2 units and random variation
within level-2 units. This model is useful as a conceptual building block in
multilevel modelling as it possesses only the explicit partition of the variability
in the data between the two levels.

Suppose that yij denotes the response variable for level-1 unit i within level-2
unit j, then the simplest multilevel model can be expressed as a model where
the response variable is the sum of a random intercept for the level-2 units j,
β0j , and the residual effect for the level-1 units i within these level-2 units, εij :

yij = β0j + εij .

Assuming the εij have zero means, the intercept β0j can be thought of as the
mean of level-2 unit or group j. Groups with a high value of β0j tend to have,
on average, high responses whereas groups with a low value of β0j tend to have,
on average, low responses. The level-2 equation also has no predictors in its
simplest form:

β0j = γ00 + u0j ,

where β0j is the dependent variable, γ00 is the level-2 intercept, and u0j is the
level-2 error with mean 0. In this equation, γ00 represents the grand mean or
the mean of the group-specific intercepts and u0j represents the deviation of
each group-specific mean from the grand mean. When the average deviation is
large, there are large group differences.

Rewriting the two equations as a single equation, we have

yij = γ00 + u0j + εij

1
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where γ00 is the population grand mean, u0j is the specific effect of level-2 unit
j, and εij is the residual effect for level-1 unit i within this level-2 unit. In other
words, level-2 unit j has the ’true mean’ γ00 + u0j , and each measurement of a
level-1 unit within this level-2 unit deviates from this true mean by some value,
called εij . Level-2 units differ randomly from one another, which is reflected
by the fact that u0j is a random variable and that this type of model is called
a ’random effects model’. Some level-2 units have a high (low) true mean,
corresponding to a high (low) value of u0j while other level-2 units have a true
mean close to the average, corresponding to a value of u0j close to zero. .

It is assumed that the random variables u0j and εij are mutually independent,
the group effects u0j having population mean 0 and variance σ2u0 (the population
between-group variance), and the residuals εij having mean 0 and variance
σ2ε (the population within-group variance). For example, if level-1 units are
children and level-2 units are schools, then the within-group variance is the
variance between children within the schools about the true school mean, while
the between-group variance is the variance between the schools’ true means.

The one-way analysis of variance examines the deviations of group means from
the grand mean. Here, it is assumed that the group means, represented by
μij = γ00+u0j and, thus, their deviations are varying randomly. Therefore, this
model is equivalent to the random effects ANOVA model, for further details see
e.g. Hsiao (1986), Rabe-Hesketh and Skrondal (2005) and Wooldridge (2006).

1.2 The Intraclass Correlation Coefficient

A basic measure for the degree of dependency in grouped observations is the
intraclass correlation coefficient. The term ’class’ is conventionally used here and
refers to the level-2 units in the classification system under consideration. There
are, however, several definitions of this coefficient, depending on the assumptions
about the sampling design.

Consider the model yij = γ00 + u0j + εij . The total variance of yij can be
decomposed as the sum of the level-2 and level-1 variances,

var(yij) = var(u0j) + var(εij) = σ2u0 + σ2ε .

The covariance between responses of two level-1 units (i and i0, with i 6= i0) in
the same level-2 unit j is equal to the variance of the contribution u0j that is
shared by these level-2 units,

cov(yij , yi0j) = var(u0j) = σ2u0 .

The correlation between values of two randomly drawn level-1 units in the same,
randomly drawn, level-2 unit is given by

ρ(yij , yi0j) =
σ2u0

σ2u0 + σ2ε
.
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This parameter is called the intraclass correlation coefficient or the intra-level-
2-unit correlation coefficient. It is seen that the coefficient ρ is:

ρ =
population variance between level-2 units

total variance
.

The intraclass correlation coefficient ρmeasures the proportion of the variance in
the outcome that is between the level-2 units. We note that the true correlation
coefficient ρ is restricted to take non-negative values, i.e. ρ ≥ 0. The existence of
a positive intraclass correlation coefficient, i.e. ρ > 0, resulting from the presence
of more than one residual term in the model, means that traditional estimation
procedures such as Ordinary Least Squares (that is, assuming σ2u0 = 0), which
are used in multiple regression with fixed effects, are inapplicable.

• Note that, conditional on being in group j

E(y.j |β0j) = β0j ,

V ar(y.j |β0j) =
σ2ε
nj

.

• But across the population

E(y.j) = γ00,

V ar(y.j) = σ2u0 +
σ2ε
nj

.

Features of note:

1. The unconditional mean is equal to the expectation of the mean condi-
tional mean.

2. The unconditional variance is equal to the mean of the conditional variance
plus the variance of the conditional mean.

1.3 Parameter Estimation by Maximum Likeli-
hood

There are three kinds of parameters that can be estimated:

1. The regression parameters: in this case there is only one, the constant:
γ00

2. The variance components: σ2u0 and σ2e .

3. Random effects: β0j or, equivalently, combined with γ00: u0j .
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The model is

yij = μij + εij ,

μij = γ00 + u0j .

The likelihood function is given by

L
¡
γ00, σ

2
ε , σ

2
u0 |y

¢
=
Y
j

+∞Z
−∞

Y
i

g (yij|u0j) f (u0j) du0j ,

where

g (yij|u0j) =
1√
2πσε

exp

Ã
− [yij − μij]

2

2σ2ε

!
,

and

f (u0j) =
1√
2πσu0

exp

Ã
−

u20j
2σ2u0

!
.

Maximization of the likelihood function over the parameter space gives MLEs
for θ =

¡
γ00, σ

2
ε , σ

2
u0

¢
. Sabre evaluates the integral L

¡
γ00, σ

2
ε , σ

2
u0 |y

¢
for the lin-

ear model using normal Gaussian quadrature or adaptive Gaussian quadrature
(numerical integration). Note that the random effects u0j are latent variables
rather than statistical parameters, and therefore are not estimated as an inte-
gral part of the statistical parameter estimation. Nevertheless, they may be
predicted by a method known as empirical Bayes estimation which produces
so-called posterior means. The basic idea of this method is that u0j can be
predicted (or estimated) by combining two kinds of information:

1. the data from group j,

2. the fact that the unobserved u0j is a random variable with mean 0 and
variance σ2u0 .

In other words, data information is combined with population information.

The posterior means for the level-2 residual u0j are given by

bu0j = E (u0j |y, θ) =
σ2u0

σ2u0 + σ2ε/nj

¡
y.j − y

¢
,

where θ are the model parameters, see Goldstein (1987).

The estimate for the intercept β0j will be the same as the estimate for u0j plus
γ00. Note that, if we used only group j, β0j would be estimated by the group
mean,

β̂0j = y.j .
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If we looked only at the population, we would estimate β0j by its population
mean, γ00. This parameter is estimated by the overall mean,

γ̂00 = y.

If we combine the information from group j with the population information, the
combined estimate for β0j is a weighted average of the two previous estimates:

β̂EB0j = wj β̂0j + (1− wj) γ̂00,

where wj =
σ2u0

σ2u0 + σ2ε/nj
. The factor wj is often referred to as a ’shrinkage

factor’ since it is always less than or equal to one. As nj increases this factor
tends to one, and as the number of level-1 units in a level-2 unit decreases the
factor becomes closer to zero. In practice we do not know the true values of
the variancess σ2u0 and σ2ε , and we substitute estimated values to obtain β̂EB0j .

1.4 Regression with level-2 effects

In multilevel analysis the level-2 unit means (group means for explanatory vari-
ables) can be considered as an explanatory variable. A level-2 unit mean for a
given level-1 explanatory variable is defined as the mean over all level-1 units,
within the given level-2 unit. The level-2 unit mean of a level-1 explanatory
variable allows us to express the difference between within-group and between-
group regressions. The within-group regression coefficient expresses the effect
of the explanatory variable within a given group; the between-group regression
coefficient expresses the effect of the group mean of the explanatory variable on
the group mean of the response variable. In other words, the between-group
regression coefficient is just the coefficient in a regression analysis for data that
are aggregated (by averaging) to the group level.

A cross-sectional example will be demonstrated.

1.5 Example C1. Linear Model of Pupil’s Maths
Achievement

The data we use in this example are a sub-sample from the 1982 High School
and Beyond Survey (Raudenbush and Bryk, 2002), and include information on
7,185 students nested within 160 schools: 90 public and 70 Catholic. Sample
sizes vary from 14 to 67 students per school.
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1.5.1 Reference

Raudenbush, S.W., Bryk, A.S., 2002, Hierarchical Linear Models, Thousand
Oaks, CA. Sage

1.5.2 Data description for hsb.dta

Number of observations (rows): 7185
Number of level-2 cases: 160

1.5.3 Variables

school: school identifier
student: student identifier
minority: 1 if student is from an ethnic minority, 0 = other
gender: 1 if student is female, 0 otherwise
ses: a standardized scale constructed from variables measuring parental edu-
cation, occupation, income and, socio-economic status
meanses: mean of the SES values for the students in this school
mathach: a measure of the students’ mathematics achievement
size: school enrolment
sector: 1 if school is from the Catholic sector, 0 = public
pracad: proportion of students in the academic track
disclim: a scale measuring disciplinary climate
himnty: 1 if more than 40% minority enrolment, 0 if less than 40%
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 school student minority gender ses meanses cses mathach size sector pracad disclim himinty meansesBYcses sectorBYcses
1224 1 0 1 -1.53 -0.43 -1.10 5.88 842 0 0.35 1.60 0 0.47 0
1224 2 0 1 -0.59 -0.43 -0.16 19.71 842 0 0.35 1.60 0 0.07 0
1224 3 0 0 -0.53 -0.43 -0.10 20.35 842 0 0.35 1.60 0 0.04 0
1224 4 0 0 -0.67 -0.43 -0.24 8.78 842 0 0.35 1.60 0 0.10 0
1224 5 0 0 -0.16 -0.43 0.27 17.90 842 0 0.35 1.60 0 -0.12 0
1224 6 0 0 0.02 -0.43 0.45 4.58 842 0 0.35 1.60 0 -0.19 0
1224 7 0 1 -0.62 -0.43 -0.19 -2.83 842 0 0.35 1.60 0 0.08 0
1224 8 0 0 -1.00 -0.43 -0.57 0.52 842 0 0.35 1.60 0 0.24 0
1224 9 0 1 -0.89 -0.43 -0.46 1.53 842 0 0.35 1.60 0 0.20 0
1224 10 0 0 -0.46 -0.43 -0.03 21.52 842 0 0.35 1.60 0 0.01 0
1224 11 0 1 -1.45 -0.43 -1.02 9.48 842 0 0.35 1.60 0 0.44 0
1224 12 0 1 -0.66 -0.43 -0.23 16.06 842 0 0.35 1.60 0 0.10 0
1224 13 0 0 -0.47 -0.43 -0.04 21.18 842 0 0.35 1.60 0 0.02 0
1224 14 0 1 -0.99 -0.43 -0.56 20.18 842 0 0.35 1.60 0 0.24 0
1224 15 0 0 0.33 -0.43 0.76 20.35 842 0 0.35 1.60 0 -0.33 0
1224 16 0 1 -0.68 -0.43 -0.25 20.51 842 0 0.35 1.60 0 0.11 0
1224 17 0 0 -0.30 -0.43 0.13 19.34 842 0 0.35 1.60 0 -0.06 0
1224 18 1 0 -1.53 -0.43 -1.10 4.14 842 0 0.35 1.60 0 0.47 0
1224 19 0 1 0.04 -0.43 0.47 2.93 842 0 0.35 1.60 0 -0.20 0
1224 20 0 0 -0.08 -0.43 0.35 16.41 842 0 0.35 1.60 0 -0.15 0
1224 21 0 1 0.06 -0.43 0.49 13.65 842 0 0.35 1.60 0 -0.21 0
1224 22 0 1 -0.13 -0.43 0.30 6.56 842 0 0.35 1.60 0 -0.13 0
1224 23 0 1 0.47 -0.43 0.90 9.65 842 0 0.35 1.60 0 -0.39 0

First few lines of hsb.dta

We take the standardized measure of mathematics achievement (mathach) as
the student-level outcome, yij . The student level (level-1) explanatory variables
are the student socio-economic status, sesij , which is a composite of parental
education, occupation and income; an indicator for student minority (1 = yes,
0 = other), and an indicator for student gender (1 = female, 0 = male). There
are two school-level (level-2) variables: a school-level variable sector, which is
an indicator variable taking on a value of one for Catholic schools and zero for
public schools, and an aggregate of school-level characteristics (meanses)j , the
average of the student ses values within each school. Two variables ses and
meanses are centred at the grand mean.

Questions motivating these analyses include the following:

• How much do the high schools vary in their mean mathematics achieve-
ment?

• Do schools with high meanses also have high maths achievement?

• Is the strength of association between student ses and mathach similar
across schools?

• Is ses a more important predictor of achievement in some schools than in
others?

• How do public and Catholic schools compare in terms of mean mathach
and in terms of the strength of the ses- relationship, after we control for
meanses?

To obtain some preliminary information about how much variation in the out-
come lies within and between schools, we may fit the one-way ANOVA to the
high school data.
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The student-level model is
yij = β0j + εij ,

where yij is mathach, for i = 1, · · · , nj students in school j, and j = 1, · · · , 160
schools. At the school level (level 2), each school’s mean maths achievement,
β0j , is represented as a function of the grand mean, γ00, plus a random error,
u0j . We refer to the variance of u0j as the school-level variance and to the
variance of εij as the student-level variance.

The combined model is given by

yij = γ00 + u0j + εij .

The data can be read into Sabre and this model estimated.

1.6 Including School-Level Effects - Model 2

The simple model yij = β0j + εij provides a baseline against which we can
compare more complex models. We begin with the inclusion of one level-
2 variable, meanses, which indicates the average ses of children within each
school. Each school’s mean is now predicted by the meanses of the school:

β0j = γ00 + γ01meansesj + u0j ,

where γ00 is the intercept, γ01 is the effect of meanses on β0j , and we assume
u0j ∼ N

¡
0, σ2u0

¢
. Substituting the level-2 equation into the level-1 model yields

yij = [γ00 + γ01meansesj ] + [u0j + εij ].

This model is the sum of two parts: a fixed part and a random part. The
two terms in the first bracket represent the fixed part, consisting of the two
gamma terms. The two terms in the second bracket represent the random
part, consisting of the u0j (which represents variation between schools) and the
εij (which represents variation within schools).

We note that the variance components σ2u0 and σ
2
ε now have different meanings.

In the model yij = β0j +εij , there were no explanatory variables, so σ2u0 and σ
2
ε

were unconditional components. Having added a predictor, σ2u0 and σ
2
ε are now

conditional components. The variance σ2u0 is a residual or conditional variance,
that is, var (β0j |meanses), the school-level variance in β0j after controlling for
school meanses.

1.6.1 Sabre commands

log using hsb1_s.log, replace
set more off
use hsb
#delimit ;
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sabre, data school student minority gender ses meanses cses mathach size
sector pracad disclim himinty meansesBYcses sectorBYcses;

sabre school student minority gender ses meanses cses mathach size sector
pracad disclim himinty meansesBYcses sectorBYcses, read;

#delimit cr
sabre, case school
sabre, yvar mathach
sabre, family g
sabre, constant cons
sabre, lfit cons
sabre, dis m
sabre, dis e
sabre, mass 64
sabre, fit cons
sabre, dis m
sabre, dis e
sabre, lfit meanses cons
sabre, dis m
sabre, dis e
sabre, fit meanses cons
sabre, dis m
sabre, dis e
log close
clear
exit

The command log using hsb1_s.log, replace opens the file hsb1.log for
the log file from the Sabre analysis and deletes any previous file with the same
name. The command sabre, lfit cons estimates the homogeneous model
using OLS, and the command sabre, mass 64 is used to provide a good ap-
proximation to the integral in L

¡
γ00, σ

2
ε , σ

2
u0 |y

¢
for the linear model. Adaptive

quadrature would require fewer mass points. An explanation of all the com-
mands is to be found in the Sabre manual. The file hsb1_s.log would contain
the following results.

1.6.2 Sabre log file

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) 12.748 0.81145E-01
sigma 6.8782

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) 12.637 0.24359
sigma 6.2569 0.52794E-01
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scale 2.9246 0.18257

X-vars Y-var Case-var
________________________________________________
(intercept) response case.1

Univariate model
Standard linear
Gaussian random effects

Number of observations = 7185
Number of cases = 160

X-var df = 1
Sigma df = 1
Scale df = 1

Log likelihood = -23557.905 on 7182 residual degrees of freedom

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) 12.713 0.76215E-01
meanses 5.7168 0.18429
sigma 6.4596

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) 12.650 0.14834
meanses 5.8629 0.35917
sigma 6.2576 0.52800E-01
scale 1.6103 0.12314

X-vars Y-var Case-var
________________________________________________
(intercept) response case.1
meanses

Univariate model
Standard linear
Gaussian random effects

Number of observations = 7185
Number of cases = 160

X-var df = 2
Sigma df = 1
Scale df = 1

Log likelihood = -23479.554 on 7181 residual degrees of freedom
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1.6.3 Model 1 discussion

The estimate of the grand mean, γ00, is 12.637. This mean should be interpreted
as the expected value of the maths achievement for a random student in a
randomly drawn class. The log file also shows that the estimate of the within-
school variance component (6.2569)2 = 39. 149 is nearly five times the size of
the between-school variance component (2.9246)2 = 8.5533. These variance
component estimates give an intraclass correlation coefficient estimate of ρ̂ =
8.5533/(8.5533 + 39.149) = 0.179 indicating that about 18% of the variance in
maths achievement is between schools.

1.6.4 Model 2 discussion

The estimated regression equation is given by

yij = [12.650 + 5.8629 meansesj ] + [u0j + εij ].

The coefficient of cons, 12.65, estimates γ00, the mean maths achievement when
the remaining predictors (here, just meanses) are 0. Because meanses is centred
at the grand mean, γ00 is the estimated mathach in a school of “average meanses”
. The coefficient of meanses, 5.8629, provides our estimate of the other fixed
effect, γ01, and tells us about the relationship between maths achievement and
meanses.

We note that the conditional component for the within-school variance (the
residual component representing σ2ε) has remained virtually unchanged (going
from (6.2569)2 to (6.2576)2). The variance component representing variation
between schools, however, has diminished markedly (going from (2.9246)2 to
(1.6103)2). This tells us that the predictor meanses explains a large proportion
of the school-to-school variation in mean maths achievement.

The estimated ρ is now a conditional intraclass correlation coefficient and mea-
sures the degree of dependence among observations within schools after control-
ling for the effect of meanses. This conditional estimate of

ρ̂ = (1.6103)2 /((1.6103)2 + (6.2576)2) = 0.062,

which is much smaller than the unconditional one.

1.7 Exercises

There are also two exercises to accompany this material, namely C1 and L1.
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Chapter 2

Linear Models II

2.1 Introduction

The basic idea of multilevel analysis is that data sets with a nesting structure
that includes unexplained variability at each level of nesting are usually not ade-
quately represented by multiple regression. The reason is that the unexplained
variability in single-level multiple regression analysis is only the variance of the
residual term. Variability in multilevel data, however, has a more complicated
structure related to the fact that several populations are involved in modelling
such data: one population for each level. Explaining variability in a multi-
level structure can be achieved by explaining variability between level-1 units
but also by explaining variability between higher-level units. For example, in
fitting multilevel models with two levels, we can try to explain the variability
between level-2 units if a random intercept at level 2 exists.

2.2 Two-Level Random Intercept Models

In these models, the intercept β0j does depend on the level-2 units but the
regression coefficient of the xij is constant. The resulting model with one
explanatory variable xij is given by

yij = β0j + β1jxij + εij .

For the level-2 model, the group-dependent intercept can be split into an grand
mean intercept and the group-dependent deviation:

β0j = γ00 + u0j ,

and the same fixed effect of xij for each level-2 unit is assumed:

β1j = γ10.

13
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The grand mean is γ00 and the regression coefficient for xij is γ10. Substitution
now leads to the model

yij = γ00 + γ10xij + u0j + εij .

The random effects u0j are the level-2 unit residuals, controlling for the effects
of variable xij . It is assumed that these residuals are drawn from normally
distributed populations having zero mean and a constant variance σ2u0 , given
the values xij of the explanatory variable. The population mean and variance
of the level-1 unit residuals εij are assumed to be zero and σ2ε , respectively
across the level-2 units.

The variance of yij conditional on the value of xij is given by

var(yij |xij) = var(u0j) + var(εij) = σ2u0 + σ2ε ,

while the covariance between two different level-1 units (i and i0, with i 6= i0) in
the same level-2 unit is

cov(yij , yi0j |xij , xi0j) = var(u0j) = σ2u0 .

The fraction of residual variability that can be attributed to level one is given
by

σ2ε
σ2u0 + σ2ε

,

and for level two this fraction is

σ2u0
σ2u0 + σ2ε

.

The residual intraclass correlation coefficient,

ρ (yij |xij) =
σ2u0

σ2u0 + σ2ε
,

is the correlation between the y-values of any two different level-1 units in the
same level-2 unit, controlling for variable x. It is analogous to the usual intr-
aclass correlation coefficient, but now controls for x. If the residual intraclass
correlation coefficient, or equivalently, σ2u0 , is positive, then the hierarchical
linear model is a better analysis than ordinary least squares regression.

An extension of this model allows for the introduction of level-2 predictors zj .
Using the level-2 model

β0j = γ00 + γ01zj + u0j ,

β1j = γ10,

the model becomes

yij = γ00 + γ10xij + γ01zj + u0j + εij ,

so that
μij = γ00 + γ10xij + γ01zj + u0j .

This model provides for a level-2 predictor, zj , while also controlling for the
effect of a level-1 predictor, xij , and the random effects of the level-2 units, u0j .
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2.3 General Two-Level Models Including Ran-
dom Intercepts

Just as in multiple regression, more than one explanatory variable can be in-
cluded in the random intercept model. When the explanatory variables at
the individual level are denoted by x1, · · · , xP , and those at the group level
by z1, · · · , zQ, adding their effects to the random intercept model leads to the
following formula

yij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j + εij ,

so that

μij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j .

The regression parameters γp0 (p = 1, · · · , P ) and γ0q (q = 1, · · · ,Q) for level-
one and level-two explanatory variables, respectively, again have the same in-
terpretation as regression coefficients in multiple regression models: one unit
increase in the value of xp (or zq) is associated with an average increase in y
of γp0 (or γ0q) units. Just as in multiple regression, some of the variables xp
and zq may be interaction variables, or non-linear (e.g., quadratic) transforms
of basic variables.

The first part of the right-hand side of the above equation incorporating the
regression coefficients,

γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj ,

is called the fixed part of the model, because the coefficients are fixed (i.e., not
stochastic). The remaining part,

u0j + εij ,

is called the random part of the model. It is again assumed that all residuals,
u0j and εij , are mutually independent and have zero means conditional on
the explanatory variables. A somewhat less crucial assumption is that these
residuals are drawn from normally distributed populations. The population
variance of the level-one residuals εij is denoted by σ2ε while the population
variance of the level-two residuals u0j is denoted by σ2u0 .

2.4 Likelihood

L
¡
γ, σ2ε , σ

2
u0 |y,x, z

¢
=
Y
j

+∞Z
−∞

Y
i

g (yij |xij , zj , u0j) f (u0j) du0j ,
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where

g (yij |xij , zj , u0j) =
1√
2πσε

exp

Ã
− [yij − μij ]

2

2σ2ε

!
,

μij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j ,

and

f (u0j) =
1√
2πσu0

exp

Ã
−

u20j
2σ2u0

!
.

2.5 Residuals

In a single-level model the usual estimate of the single residual term is just the
residual

eij = yij − γ̂00 − γ̂10xij .

In a multilevel model, however, there are several residuals at different levels.
In a random intercept model, the level-2 residual u0j can be predicted by the
posterior means bu0j = E (u0j |yj ,xj , θ) ,
where θ are the model parameters. We can show that

bu0j = σ2u0
σ2u0 + σ2ε/nj

ej ,

where the ej are averages of eij for level-2 units j = 1, · · · , N . These residuals
have two interpretations. Their basic interpretation is as random variables
with a distribution whose parameter values tell us about the variation among
the level-2 units, and which provide efficient estimates for the fixed coefficients.
A second interpretation is as individual estimates for each level-2 unit where we
use the assumption that they belong to a population of units to predict their
values.

When the residuals at higher levels are of interest in their own right, we need
to be able to provide interval estimates and point estimates for them. For
these purposes, we require estimates of the standard errors of the estimated
residuals, where the sample estimate is viewed as a random realization from
repeated sampling of the same higher-level units whose unknown true values
are of interest.

Note that we can now estimate the level-1 residuals simply by the formula:

ε̂ij = eij − bu0j .
The level-1 residuals are generally not of interest in their own right but are used
rather for model checking, having first been standardised using the diagnostic
standard errors.
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2.6 Checking Assumptions in Multilevel Models

Residual plots can be used to check model assumptions. There is one important
difference from ordinary regression analysis; there is more than one residual. In
fact, we have residuals for each random effect in the multilevel model. Conse-
quently, many different residual plots can be constructed.

Most regression assumptions are concerned with residuals; the difference be-
tween the observed y and the y predicted by the regression line. These residu-
als will be very useful to test whether or not the multilevel model assumptions
hold.

As in single-level models, we can use the estimated residuals to help check the
model assumptions. The two particular assumptions that can be studied readily
are the assumption of normality and the assumption that the variances in the
model are constant. Because the variances of the residual estimates depend in
general on the values of the fixed coefficients it is common to standardise the
residuals by dividing by the appropriate standard errors.

To examine the assumption of linearity, for example, we can produce a residual
plot against predicted values of the dependent variable using the fixed part of
the multilevel regression model for the prediction. A residual plot should show
a random scatter of residuals around the zero line. Even if the residuals are
evenly distributed around zero, the regression model is still questionable when
there is a pattern in the residuals. Ideally, you should not be able to detect any
patterns.

To check the normality assumption we can use a normal probability plot. The
standardized residuals are plotted against a theoretical normal distribution in
such a way that the points should form an approximate straight line. Departures
from this straight line indicate departures from normality. We will return to
residuals in a later section, though Sabre doesnt currently make the residuals
available to Stata.



18 2. Linear Models II

2.7 Example C2. Linear model of Pupil’s Maths
Achievement

The data we use in this example (hsb.dta) are a sub-sample from the 1982
High School and Beyond Survey (Raudenbush and Bryk, 2002), and include
information on 7,185 students nested within 160 schools: 90 public and 70
Catholic. Sample sizes vary from 14 to 67 students per school.

2.7.1 References

Raudenbush, S.W., Bryk, A.S., 2002, Hierarchical Linear Models, Thousand
Oaks, CA. Sage.

2.7.2 Data description for hsb.dta

Number of observations (rows): 7185
Number of level-2 cases: 160

2.7.3 Variables

The variables include the following:
school: school identifier
student: student identifier
minority: 1 if student is from an ethnic minority, 0 if otherwise)
gender: 1 if student is female, 0 otherwise
ses: a standardized scale constructed from variables measuring parental edu-
cation, occupation, income and socio-economic status
meanses: mean of the SES values for the students in this school
mathach: a measure of the students’ mathematics achievement
size: school enrolment
sector: 1 if school is from the Catholic sector, 0 if public
pracad: proportion of students in the academic track
disclim: a scale measuring disciplinary climate
himnty: 1 if more than 40% minority enrolment, 0 if less than 40%
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 school student minority gender ses meanses cses mathach size sector pracad disclim himinty meansesBYcses sectorBYcses
1224 1 0 1 -1.53 -0.43 -1.10 5.88 842 0 0.35 1.60 0 0.47 0
1224 2 0 1 -0.59 -0.43 -0.16 19.71 842 0 0.35 1.60 0 0.07 0
1224 3 0 0 -0.53 -0.43 -0.10 20.35 842 0 0.35 1.60 0 0.04 0
1224 4 0 0 -0.67 -0.43 -0.24 8.78 842 0 0.35 1.60 0 0.10 0
1224 5 0 0 -0.16 -0.43 0.27 17.90 842 0 0.35 1.60 0 -0.12 0
1224 6 0 0 0.02 -0.43 0.45 4.58 842 0 0.35 1.60 0 -0.19 0
1224 7 0 1 -0.62 -0.43 -0.19 -2.83 842 0 0.35 1.60 0 0.08 0
1224 8 0 0 -1.00 -0.43 -0.57 0.52 842 0 0.35 1.60 0 0.24 0
1224 9 0 1 -0.89 -0.43 -0.46 1.53 842 0 0.35 1.60 0 0.20 0
1224 10 0 0 -0.46 -0.43 -0.03 21.52 842 0 0.35 1.60 0 0.01 0
1224 11 0 1 -1.45 -0.43 -1.02 9.48 842 0 0.35 1.60 0 0.44 0
1224 12 0 1 -0.66 -0.43 -0.23 16.06 842 0 0.35 1.60 0 0.10 0
1224 13 0 0 -0.47 -0.43 -0.04 21.18 842 0 0.35 1.60 0 0.02 0
1224 14 0 1 -0.99 -0.43 -0.56 20.18 842 0 0.35 1.60 0 0.24 0
1224 15 0 0 0.33 -0.43 0.76 20.35 842 0 0.35 1.60 0 -0.33 0
1224 16 0 1 -0.68 -0.43 -0.25 20.51 842 0 0.35 1.60 0 0.11 0
1224 17 0 0 -0.30 -0.43 0.13 19.34 842 0 0.35 1.60 0 -0.06 0
1224 18 1 0 -1.53 -0.43 -1.10 4.14 842 0 0.35 1.60 0 0.47 0
1224 19 0 1 0.04 -0.43 0.47 2.93 842 0 0.35 1.60 0 -0.20 0
1224 20 0 0 -0.08 -0.43 0.35 16.41 842 0 0.35 1.60 0 -0.15 0
1224 21 0 1 0.06 -0.43 0.49 13.65 842 0 0.35 1.60 0 -0.21 0
1224 22 0 1 -0.13 -0.43 0.30 6.56 842 0 0.35 1.60 0 -0.13 0
1224 23 0 1 0.47 -0.43 0.90 9.65 842 0 0.35 1.60 0 -0.39 0

First few lines of hsb.dta

We will use these data as a worked example. We think of our data as structured
in two levels: students within schools and between schools. The outcome con-
sidered here is again maths achievement score (y) related to a set of explanatory
variables x and z. At the student level,

yij = β0j + β1jsesij + β2jminorityij + β3jgenderij + εij .

At the school level,
β0j = γ00 + γ01meansesj + u0j ,

where u0j ∼ N
¡
0, σ2u0

¢
, and

βpj = γp0, for p = 1, 2, 3.

In the combined form, the model is

yij = γ00 + γ01meansesj + γ10sesij + γ20minorityij

+ γ30genderij + u0j + εij .

Having written down a combined equation, we can now fit the model using
Sabre.

2.7.4 Sabre commands

log using hsb2_s.log, replace
set more off
use hsb
#delimit ;
sabre, data school student minority gender ses meanses cses mathach size

sector pracad disclim himinty meansesBYcses sectorBYcses;
sabre school student minority gender ses meanses cses mathach size sector

pracad disclim himinty meansesBYcses sectorBYcses, read;
#delimit cr
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sabre, case school
sabre, yvar mathach
sabre, family g
sabre, constant cons
sabre, lfit minority gender ses meanses cons
sabre, dis m
sabre, dis e
sabre, mass 64
sabre, fit minority gender ses meanses cons
sabre, dis m
sabre, dis e
log close
clear
exit

2.7.5 Sabre log file

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) 14.070 0.11710
minority -2.3410 0.17381
gender -1.3200 0.14658
ses 1.9551 0.11151
meanses 2.8675 0.21311
sigma 6.1857

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) 14.048 0.17491
minority -2.7282 0.20412
gender -1.2185 0.16082
ses 1.9265 0.10844
meanses 2.8820 0.36521
sigma 5.9905 0.50554E-01
scale 1.5480 0.11885

X-vars Y-var Case-var
________________________________________________
(intercept) response case.1
minority
gender
ses
meanses

Univariate model
Standard linear
Gaussian random effects

Number of observations = 7185
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Number of cases = 160

X-var df = 5
Sigma df = 1
Scale df = 1

Log likelihood = -23166.634 on 7178 residual degrees of freedom

2.7.6 Discussion

These results show that the covariates in the model for mathach generally have
larger standard errors in the random effects model than they do in the homo-
geneous model. These results also show that in the random effects model, the
random effect scale parameter estimate is highly significant with a value 1.5480
(s.e. 0.11885), suggesting that students in the same school have correlated re-
sponses. Furthermore, students that are from an ethnic minority do worse than
those who are not, and female students seem to do worse than males.
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For further material on the linear model with random intercepts see: Goldstein,
(1987), Hsiao, (1986), Rabe-Hesketh and Skrondal (2005) and Wooldridge, J.
M. (2006),

2.8 Comparing Model Likelihoods

Each model that is fitted to the same set of data has a corresponding log-
likelihood value that is calculated at the maximum likelihood estimates for that
model. These values are used to compare and statistically test terms in the
model.

The deviance test, or likelihood ratio test, is a quite general principle for statis-
tical testing. In applications of the hierarchical linear model, this test is used
mainly for multi-parameter tests and for tests about the fixed part as well as
the random part of the model. The general principle is as follows.

When parameters of a statistical model are estimated by the maximum likeli-
hood (ML) method, the estimation also provides the likelihood, which can be
transformed into the deviance defined as minus twice the natural logarithm of
the likelihood. This deviance can be regarded as a measure of lack of fit be-
tween model and data, but (in most statistical models) one cannot interpret the
deviance directly, but only differences in deviance for several models fitted to
the same data set.

In general, suppose that model one has t parameters, while model two is a subset
of model one with only r of the t parameters so that r < t. Model one will have
a higher log-likelihood than model two. For large sample sizes, the difference
between these two likelihoods, when multiplied by two, will behave like the chi-
square distribution with (t − r) degrees of freedom. This can be used to test
the null hypothesis that the (t − r) parameters that are not in both models
are zero. Sabre computes the log-likelihoods log(L) (which are negative values).
These values can be used directly to calculate the differences for statistical tests.
Differences between nested likelihoods are called deviances, where:

D = −2[log(Lr)− log(Lt)],

log(Lt) is the log likelihood for the extended model, and log(Lr) is the log
likelihood for the simpler model. With large sample sizes, D approximately
follows a chi-square distribution with (t− r) degrees of freedom.

For regression models we are estimating, the homogeneous model log likelihood
= -23285.328 on 7179 residual degrees of freedom when compared to the random
effects model log likelihood = -23166.634 on 7178 residual degrees of freedom,
here has a χ2 improvement of −2(−23285.328 + 23166.634) = 237.39 for 1 df,
which is highly significant, justifying the extra scale parameter.

The estimates of the residual variance σ2ε and the random intercept variance
σ2u0 are much lower in the random effects model than in the simple model with
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no explanatory variables. This shows that a part of the variability is explained
by including the explanatory variables at both levels. The residual intraclass
correlation coefficient is estimated by

ρ̂ =
(1.5480)2

(1.5480)2 + (5.9905)2
= 0.062595,

In a model without the explanatory variables, this was 0.18. The residual
(or between-student) variation clearly dominates this model. The explanatory
variables will have accounted for a good deal of the level-2 variance.

2.9 Exercises

There are also two exercises to accompany this section, namely C2 and L2.

2.10 References

Goldstein, H., (1987), Multilevel Models in Educational and Social Research,
Griffin, London.

Hsiao, C., (1986), Analysis of Panel Data, Cambridge University Press, Cam-
bridge.

Rabe-Hesketh, S., and Skrondal, A., (2005), Multilevel and Longitudinal Mod-
elling using Stata, Stata Press, Stata Corp, College Station, Texas.

Wooldridge, J. M. (2006), Introductory Econometrics: A Modern Approach.
Third edition. Thompson, Australia.
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Chapter 3

Multilevel Binary Response
Models

3.1 Introduction

In all of the multilevel linear models considered so far, it was assumed that the
response variable has a continuous distribution and that the random coefficients
and residuals are normally distributed. These models are appropriate where
the expected value of the response variable at each level may be represented
as a linear function of the explanatory variables. The linearity and normality
assumptions can be checked using standard graphical procedures. There are
other kinds of outcomes, however, for which these assumptions are clearly not
realistic. An example is the model for which the response variable is discrete.

Important instances of discrete response variables are binary variables (e.g.,
success vs. failure of whatever kind) and counts (e.g., in the study of some kind
of event, the number of events happening in a predetermined time period).

For a binary variable yij that has probability μij for outcome 1 and probability
1− μij for outcome 0, the mean is

E(yij) = μij ,

and the variance is
var(yij) = μij(1− μij).

The variance is not a free parameter but is determined by the mean.

This has led to the development of regression-like models that differ from the
usual multiple linear regression models and that take account of the non-normal
distribution of the response variable, its restricted range, and the relation be-
tween mean and variance. The best-known method of this kind is logistic
regression, a regression-like model for binary data.

25
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3.2 The Two-Level Logistic Model

We start by introducing a simple two-level model that will be used to illustrate
the analysis of binary response data. Let j denote the level-2 units (clusters)
and i denote the level-1 units (nested observations). Assume that there are
j = 1, · · · ,m level-2 units and i = 1, · · · , nj level-1 units nested within each
level-2 unit j. The total number of level-1 observations across level-2 units is

given by n =
mP
j=1

nj .

For a multilevel representation of a simple model with only one explanatory
variable xij , the level-1 model is written in terms of the latent response variable
y∗ij as

y∗ij = β0j + β1jxij + εij ,

and the level-2 model becomes

β0j = γ00 + u0j ,

β1j = γ10.

In practice, y∗ij is unobservable, and this can be measured indirectly by an
observable binary variable yij defined by

yij =

½
1 if y∗ij > 0
0 otherwise,

such that,

Pr (yij = 1 | xij , u0j) = Pr
¡
y∗ij > 0 | u0j

¢
= Pr (γ00 + γ10xij + u0j + εij > 0 | u0j)
= Pr (εij > − {γ00 + γ10xij + u0j} | u0j)

=

Z ∞
−{γ00+γ10xij+u0j}

f (εij | u0j) dεij

= 1− F (− {γ00 + γ10xij + u0j})
= μij .

For symmetric distributions for f (εij | u0j) like the normal or logistic we have

1− F (− {γ00 + γ10xij + u0j}) = F (γ00 + γ10xij + u0j) ,

where F (·) is the cumulative distribution function of εij .

We view the observed values yij as a realization of a random variable yij that
can take the values one and zero with probabilities μij and 1−μij , respectively.
The distribution of yij is called a Bernoulli distribution with parameter μij , and
can be written as

g(yij |xij , u0j) = μ
yij
ij (1− μij)

1−yij , yij = 0, 1.
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To proceed, we need to impose an assumption about the distributions of u0j and
εij . As in the linear case, we assume that the u0j is distributed as N

¡
0, σ2u0

¢
.

Then, if the cumulative distribution of εij is assumed to be logistic, we have the
multilevel logit model, and if we assume that εij ∼ N (0, 1), we have the probit
model.

We complete the specification of the logit model by expressing the functional
form for μij in the following manner:

μij =
exp (γ00 + γ10xij + u0j)

1 + exp (γ00 + γ10xij + u0j)
.

The probit model is based upon the assumption that the disturbances εij are
independent standard normal variates, such that

μij = Φ(γ00 + γ10xij + u0j),

where Φ (·) denotes the cumulative distribution function for a standard normal
variable.

3.3 Logit and Probit Transformations

Interpretation of the parameter estimates obtained from either the logit or probit
regressions are best achieved on a linear scale, such that for a logit regression,
we can re-express μij as

logit (μij) = log

µ
μij

1− μij

¶
= γ00 + γ10xij + u0j .

This equation represents the log odds of observing the response yij = 1. This
is linear in x, and so the effect of a unit change in xij is to increase the log
odds by γ10. Because the logit link function is non-linear, the effect of a unit
increase in xij is harder to comprehend if measured on the probability scale μij .

The probit model may be rewritten as

probit (μij) = Φ
−1 (μij) = γ00 + γ10xij + u0j .

The logistic and normal distributions are both symmetrical around zero and
have very similar shapes, except that the logistic distribution has fatter tails. As
a result, the conditional probability functions are very similar for both models,
except in the extreme tails. For both the logit and probit link functions, any
probability value in the range [0, 1] is transformed so that the resulting values
of logit(μij) and probit(μij) will lie between −∞ and +∞.

A further transformation of the probability scale that is sometimes useful in
modelling binomial data is the complementary log-log transformation. This
function again transforms a probability μij in the range [0, 1] to a value in
(−∞,+∞), using the relationship log[−log(1− μij)].
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3.4 General Two-Level Logistic Models

Suppose the observed binary responses are binomially distributed, such that
yij ∼ bin (1, μij), with conditional variance var(yij |μij) = μij (1− μij) . The
multilevel logistic regression model with P level-1 explanatory variables x1, · · · , xP
and Q level-2 explanatory variables z1, · · · , zQ has the following form:

logit(μij) = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j ,

where it is assumed that u0j has a normal distribution with zero mean and
variance σ2u0 .

3.5 Residual Intraclass Correlation Coefficient

For binary responses, the intraclass correlation coefficient is often expressed in
terms of the correlation between the latent responses y∗. Since the logistic
distribution for the level-1 residual, εij , implies a variance of π2/3 = 3.29, this
implies that for a two-level logistic random intercept model with an intercept
variance of σ2u0 , the intraclass correlation coefficient is

ρ =
σ2u0

σ2u0 + π2/3
.

For a two-level random intercept probit model, this type of intraclass correlation
coefficient becomes

ρ =
σ2u0

σ2u0 + 1
,

since for the probit model we assume that εij ∼ N (0, 1), and this model fixes the
level-1 residual variance of the unobservable variable y∗ to 1 (see, e.g., Skrondal
and Rabe-Hesketh, 2004).

3.6 Likelihood

L
¡
γ, σ2u0 |y,x, z

¢
=
Y
j

+∞Z
−∞

Y
i

g (yij |xij , zj , u0j) f (u0j) du0j ,

where
g (yij |xij , zj , u0j) = μ

yij
ij (1− μij)

1−yij ,

μij = 1− F

Ã
−
(
γ00 +

PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j

)!
,
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and

f (u0j) =
1√
2πσu0

exp

Ã
−

u20j
2σ2u0

!
.

Sabre evaluates the integral L
¡
γ, σ2u0 |y,x, z

¢
for the binary response model

using normal Gaussian quadrature or adaptive Gaussian quadrature (numerical
integration). There is not an analytic solution for this integral with normally
distributed u0j .

A cross-sectional example will be demonstrated.
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3.7 Example C3. Binary Response Model of
Pupil’s Repeating a Grade at Primary School

Raudenbush and Bhumirat (1992) analysed data on whether not 7185 children
had to repeat a grade during their time at primary school (we used the data
from 411 schools). The data were from a national survey of primary education
in Thailand in 1988. We use a subset of the Raudenbush and Bhumirat (1992)
data.

3.7.1 References

Raudenbush, S.W., Bhumirat, C., 1992. The distribution of resources for pri-
mary education and its consequences for educational achievement in Thailand,
International Journal of Educational Research, 17, 143-164

3.7.2 Data description for thaieduc1.dta

Number of observations (rows): 8582
Number of level-2 cases: 411

3.7.3 Variables

schoolid: school identifier
sex: 1 if child is male, 0 otherwise
pped: 1 if the child had pre-primary experience, 0 otherwise
repeat: 1 if the child repeated a grade during primary school, 0 otherwise
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 schoolid sex pped repeat
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 0 1 0
10101 1 1 0
10101 1 1 0
10101 1 1 0
10101 1 1 0
10102 0 0 0
10102 0 1 0
10102 0 1 0
10102 0 1 0
10102 0 1 0
10102 0 1 0
10102 0 1 0

First few lines of thaieduc1.dta

A second version of these data thaieduc2.dta, number of observations (rows):
7516, contains the name set of variables as thaieduc1.dta with the addition of
one further variable, a school-level variable msesc where:

msesc: mean socio-economic staus score

We take repeat as the binary response variable, the indicator of whether a child
has ever repeated a grade (0 = no, 1 = yes). The level-1 explanatory variables
are sex (0 = girl, 1 = boy) and child pre-primary education pped (0 = no,
1 = yes). The probability that a child will repeat a grade during the primary
years, μij , is of interest.

At first, we estimate a multi-level model with just a multilevel constant term
and the school-specific random effect:

logit (μij) = γ00 + u0j ,

where u0j ∼ N
¡
0, σ2u0

¢
. This will allow us to determine the magnitude of

variation between schools in grade repetition. Then we estimate a multilevel
model which includes the school-level variable msesc and the child-level variables
sex and pped.

logit (μij) = γ00 + γ10msescij + γ20sexij + γ30ppedij + u0j .
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3.7.4 Sabre commands

log using thaieduc_s.log, replace
set more off
use thaieduc1
sabre, data schoolid sex pped repeat
sabre schoolid sex pped repeat, read
sabre, case schoolid
sabre, yvar repeat
sabre, constant cons
sabre, lfit cons
sabre, dis m
sabre, dis e
sabre, fit cons
sabre, dis m
sabre, dis e
clear
use thaieduc2
sabre, data schoolid sex pped repeat msesc
sabre schoolid sex pped repeat msesc, read
sabre, case schoolid
sabre, yvar repeat
sabre, constant cons
sabre, lfit msesc sex pped cons
sabre, dis m
sabre, dis e
sabre, fit msesc sex pped cons
sabre, dis m
sabre, dis e
log close
clear
exit

3.7.5 Sabre log file

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -1.7738 0.30651E-01

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -2.1263 0.79655E-01
scale 1.2984 0.84165E-01

X-vars Y-var Case-var
________________________________________________
(intercept) response case.1
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Univariate model
Standard logit
Gaussian random effects

Number of observations = 8582
Number of cases = 411

X-var df = 1
Scale df = 1

Log likelihood = -3217.2642 on 8580 residual degrees of freedom

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -1.7832 0.58777E-01
msesc -0.24149 0.93750E-01
sex 0.42777 0.67637E-01
pped -0.56885 0.70421E-01

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -2.2280 0.10461
msesc -0.41369 0.22463
sex 0.53177 0.75805E-01
pped -0.64022 0.98885E-01
scale 1.3026 0.72601E-01

X-vars Y-var Case-var
________________________________________________
(intercept) response case.1
msesc
sex
pped

Univariate model
Standard logit
Gaussian random effects

Number of observations = 7516
Number of cases = 356

X-var df = 4
Scale df = 1

Log likelihood = -2720.7581 on 7511 residual degrees of freedom
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3.7.6 Discussion

For the constant-only model, the estimated average log-odds of repetition across
primary schools, γ00, is -2.1263, and the variance between schools in school-
average log-odds of repetition, σ2u0 , is (1.2984)

2 = 1.6858.

The estimate of the residual intraclass correlation coefficient is given by

ρ̂ =
1.6858

(1.6858 + π2/3)
= 0.33881.

The second data set thaieduc2.tab has fewer cases than the first thaieduc1.tab
because of missing values on the additional school-level covariate, msesc. The
variance between schools in thaieduc2.tab for the logit model with msesc,
sex and pped , σ2u0 , is (1.3026)

2
= 1.6968, which is highly significant and the

estimate of the residual intraclass correlation coefficient is

ρ̂ =
1.6968

1.6968 + π2/3
= 0.34027.

As sex is a dummy variable indicating whether the pupil is a girl or a boy, it
can be helpful to write down a pair of fitted models, one for each gender. By
substituting the values 1 for boy and 0 for girl in sex, we get the boy’s constant
−2.2280 + 0.53177 = −1.6962, and we can write:

logit (μij ; girl) = −2.2280− 0.4137msescj − 0.64022ppedij + u0j ,

logit (μij ; boy) = −1.6962− 0.4137msescj − 0.64022ppedij + u0j .

The intercepts in these two models are quite different.
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For further discussion on binary response models with random intercepts see:
Hsiao (1986), Rabe-Hesketh and Skrondal (2005) and Wooldridge (2002).

3.8 Exercises

There are two exercises to accompany this section, namely C3 and L4.

3.9 References

Rabe-Hesketh, S., and Skrondal, A., (2005), Multilevel and Longitudinal Mod-
elling using Stata, Stata Press, Stata Corp, College Station, Texas.

Hsiao, C., (1986), Analysis of Panel Data, Cambridge University Press, Cam-
bridge.

Wooldridge, J. M. (2002), Econometric Analysis of Cross Section and Panel
Data, MIT Press, Cambridge Mass.
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Chapter 4

Multilevel Models for
Ordered Categorical
Variables

4.1 Introduction

Variables that have as outcomes a small number of ordered categories are quite
common in the social and biomedical sciences. Examples of such variables are
responses to questionnaire items (with outcomes, e.g., ’completely disagree’,
’disagree’, ’agree’, ’completely agree’), and a test scored by a teacher as ’fail’,
’satisfactory’, or ’good’, etc. Very useful models for this type of data are the
multilevel ordered logistic regression model, also called the multilevel ordered
logit model or the multilevel proportional odds model; and the closely related
multilevel ordered probit model. This section is about multilevel models where
the response variable is such an ordinal categorical variable.

When the number of categories is two, the dependent variable is binary. When
the number of categories is rather large (10 or more), it may be possible to
approximate the distribution by a normal distribution and apply the hierarchical
linear model for continuous outcomes. The main issue in such a case is the
homoscedasticity assumption: is it reasonable to assume that the variances of
the random terms in the hierarchical linear model are constant? (The random
terms in a random intercept model are the level-one residuals, εij , and the
random intercept, u0j .) To check this, it is useful to investigate the skewness
of the distribution. If in some groups, or for some values of the explanatory
variables, the response variable follows distributions that are very skewed toward
the lower or upper end of the scale, then the homoscedasticity assumption is
likely to be violated.

37
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If the number of categories is small (3 or 4), or if it is between 5 and, say,
10, and the distribution cannot be well approximated by a normal distribution,
then statistical methods for ordered categorical outcomes can be useful.

It is usual to assign numerical values to the ordered categories, remembering
that the values are arbitrary. We consider the values for the ordered categories
are defined as 1, · · · , C, where C is the number of categories. Thus, on the
four-point scale mentioned above, ’completely disagree’ would get the value 1,
’disagree’ would be represented by 2, ’agree’ by 3, and ’completely agree’ by the
value 4. Let the C ordered response categories be coded as c = 1, 2, · · · , C.

The multilevel ordered models can also be formulated as threshold models. The
real line is divided by thresholds into C intervals, corresponding to the C or-
dered categories. The first threshold is γ1. Threshold γ1 defines the upper
bound of the interval corrsponding to observed outcome 1. Similarly, threshold
γ−1 defines the lower bound of the interval corrsponding to observed outcome
C. Threshold γc defines the boundary between the intervals corresponding to
observed outcomes c− 1 and c (for c = 2, · · · , C − 1). The latent response vari-
able is denoted by y∗ij and the observed categorical variable yij is related to y

∗
ij

by the ’threshold model’ defined as

yij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if −∞ < y∗ij ≤ γ1
2 if γ1 < y∗ij ≤ γ2
...

...
C if γC−1 < y∗ij < +∞.

4.2 The Two-Level Ordered Logit Model

Consider the latent response variable y∗ij for level-one unit i in level-two unit
j and the observed categorical variable yij related to y∗ij . The ordinal models
can be written in terms of y∗ij

y∗ij = θij + εij ,

where

θij = β0j +
PX
p=1

βpxpij .

In the absence of explanatory variables and random intercepts, the response
variable yij takes on the values of c with probability

pij(c) = Pr(yij = c),

for c = 1, · · · , C. As ordinal response models often utilize cumulative compar-
isons of the ordinal outcome, define the cumulative response probabilities for
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the C categories of the ordinal outcome yij as

Pij(c) = Pr(yij ≤ c) =
cX

k=1

pij(k), c = 1, · · · , C.

Note that this cumulative probability for the last category is 1; i.e. Pij(C) = 1.
Therefore, there are only (C− 1) cumulative probabilities Pij(c) to estimate. If
the cumulative density function of εij is F , these cumulative probabilities are
denoted by

Pij(c) = F (γc − θij), c = 1, · · · , C − 1,
where γ0 = −∞ and γC = +∞. Equivalently, we can write the model as a
cumulative model

G
£
Pij(c)

¤
= γc − θij ,

where G = F−1 is the link function.

If εij follows the logistic distribution, this results in the multilevel ordered logis-
tic regression model, also called the multilevel ordered logit model or multilevel
proportional odds model. If εij has the standard normal distribution, this leads
to the multilevel ordered probit model. The differences between these two mod-
els are minor and the choice between them is a matter of fit and convenience.

Assuming the distribution of the error term εij of the latent response y∗ij to be
logistic, the cumulative probability function of yij will be written as

Pij(c) = Pr(εij ≤ γc − θij)

=
exp (γc − θij)

1 + exp (γc − θij)
.

The idea of cumulative probabilities leads naturally to the cumulative logit
model

log

∙
Pij(c)

1− Pij(c)

¸
= log

∙
Pr (yij ≤ c)

Pr (yij > c)

¸
= γc − θij , c = 1, · · · , C − 1,

with (C−1) strictly increasing model thresholds γc (i.e., γ1 < γ2... < γC−1). In
this case, the observed ordinal outcome yij = c if γc−1 ≤ y∗ij < γc for the latent
variable (with γ0 = −∞ and γC = +∞). As in the binary case, it is common
to set one threshold to zero to fix the location of the latent variable. Typically,
this is done in terms of the first threshold (i.e., γ1 = 0).

4.3 Level-1 Model

With explanatory variables and random intercepts the level-1 model becomes

log

∙
Pr (yij ≤ c | xij , β0j)

1− Pr (yij ≤ c | xij , β0j)

¸
= γc −

Ã
β0j +

PX
p=1

βpxpij

!
,
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where γc is the threshold parameter for category c = 1, · · · , C − 1.

Since the regression coefficients β do not carry the c subscript, they do not vary
across categories. Thus, the relationship between the explanatory variables and
the cumulative logits does not depend on c. This assumption of identical odds
ratios across the (C − 1) partitions of the original ordinal outcome is called the
proportional odds assumption (McCullagh, 1980). As written above, a positive
coefficient for a regressor indicates that, as values of the regressor increase, so do
the odds that the response is greater than or equal to c, for any c = 1, · · · , C−1.

Although this is a natural way of writing the model, because it means that, for
a positive β, as x increases so does the value of y∗, it is not the only way of
writing the model. In particular, the model is sometimes written as

log

∙
Pr (yij ≤ c | xij , β0j)

1− Pr (yij ≤ c | xij , β0j)

¸
= γc +

Ã
β0j +

PX
p=1

βpxpij

!
,

in which case the regression parameters β are identical in magnitude but of
opposite sign (see, eg. Raudenbush and Bryk, 2002).

4.4 Level-2 Model

The level-2 model has the usual form

β0j = γ00 +

QX
q=1

γ0qzqj + u0j ,

where the random effects u0j are normally distributed.

Note that the model which includes the intercept parameter γ00 and the thresh-
old γ1 is not identifiable. Let us consider a simple intercept model with no
explanatory variables. For the first category we have

log

∙
Pr (yij ≤ 1 | u0j)

1− Pr (yij ≤ 1 | u0j)

¸
= γ1 − (γ00 + u0j) .

From this equation, it is apparent that parameters γ1 and γ00 cannot be es-
timated separately and therefore those parameters are not identifiable. For
identification, the first threshold γ1 or the intercept γ00 may be fixed at zero.
The Sabre syntax uses γ00 = 0.

4.5 Dichotomization of Ordered Categories

Models for ordered categorical outcomes are more complicated to fit and to in-
terpret than models for dichotomous outcomes. Therefore it can make sense
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also to analyze the data after dichotomizing the outcome variable whilst re-
taining the ordinality of the response categories. For example, if there are 3
outcomes, one could analyze the dichotomization {1} versus {2, 3} and also {1,
2} versus {3}. Each of these analyses separately is based, of course, on less
information, but may be easier to carry out and to interpret than an analysis
of the original ordinal outcome.

4.6 Likelihood

L
¡
γ, σ2ε , σ

2
u0 |y,x, z

¢
=
Y
j

+∞Z
−∞

Y
i

g (yij |xij , zj,u0j) f (u0j) du0j ,

where

g (yij |xij , zj,u0j) =
Y
c

Pr(yij = c)
yijc

,

=
Y
c

¡
Pij(c) − Pij(c−1)

¢yijc
,

and yijc = 1, if yij = c, 0 otherwise,

Pij(c) = Pr

Ã
εij ≤

Ã
γc −

(
γ00 +

PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j

)!!

= F

Ã
γc −

(
γ00 +

PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j

)!
,

where F (·) is the cumulative distribution function of εij and

f (u0j) =
1√
2πσu0

exp

Ã
−

u20j
2σ2u0

!
.

Sabre evaluates the integral L
¡
γ, σ2ε , σ

2
u0 |y,x, z

¢
for the ordered response model

using normal Gaussian quadrature or adaptive Gaussian quadrature (numerical
integration). There is not an analytic solution for this integral with normally
distributed u0j .

A cross-sectional example on teachers in schools (level 2) will be demonstrated.
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4.7 Example C4. Ordered Response Model of
Teacher’s Commitment to Teaching

Rowan, Raudenbush and Cheong (1993) analysed data from a 1990 survey of
teachers working in 16 public schools in California and Michigan. The schools
were specifically selected to vary in terms of size, organizational structure, and
urban versus suburban location. The survey asked the following question: if you
could go back to college and start all over again, would you again choose teaching
as a profession?’ Possible responses were: 1 = yes; 2 = not sure; 3 = no. We
take the teachers’ response to this question as the response variable and try
to establish if characteristics of the teachers and school help to predict their
response to this question. We estimate 2 models, the first (on teacher1.dta,
# observations = 661, # cases = 16) without covariates the second with. Because
there are missing values in the covariates, the second data set (teacher2.dta,#
observations = 650, # cases = 16) has fewer observations.

4.7.1 Reference

Rowan, B., Raudenbush, S., and Cheong, Y. (1993). Teaching as a non-routine
task: implications for the organizational design of schools, Educational Admin-
istration Quarterly, 29(4), 479-500.

4.7.2 Data description for teacher1.dta and teacher2.dta

Number of observations in teacher1.dta (rows): 661
Number of observations in teacher2.dta (rows): 650
Number of level-2 cases: 16

4.7.3 Variables

We use a subset of the data with the following variables:
tcommit: the three-category measure of teacher commitment
taskvar: teachers’ perception of task variety, which assesses the extent to which
teachers followed the same teaching routines each day, performed the same tasks
each day, had something new happening in their job each day, and liked the
variety present in their work
tcontrol: a school-level variable, which is a measure of teacher control. This
variable was constructed by aggregating nine item scale scores of teachers within
a school. It indicates teacher control over school policy issues such as student
behaviour codes, content of in-service programmes, student grouping, school
curriculum, and text selection; and control over classroom issues such as teaching
content and techniques, and amount of homework assigned.
schlid: school identifier
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 tcommit taskvar tcontrol schlid
1 -0.26 -0.02 1
1 0.57 -0.02 1
1 0.13 -0.02 1
2 -0.26 -0.02 1
3 -1.10 -0.02 1
1 0.53 -0.02 1
2 0.61 -0.02 1
1 0.57 -0.02 1
1 -0.26 -0.02 1
3 -0.22 -0.02 1
3 -2.77 -0.02 1
2 0.57 -0.02 1
1 0.97 -0.02 1
1 1.01 -0.02 1
3 0.57 -0.02 1
1 -0.18 -0.02 1
2 -0.30 -0.02 1
1 -0.26 -0.02 1
3 -0.58 -0.02 1
1 -1.93 -0.02 1
1 0.17 -0.02 1

First few lines of teacher2.dta

The response variable tcommit takes on the value of k = 1, 2, 3. In the ab-
sence of explanatory variables and random intercepts, these values occur with
probabilities

pij(1) = Pr(yij = 1) = Pr(”Yes”),

pij(2) = Pr(yij = 2) = Pr(”Not sure”),

pij(3) = Pr(yij = 3) = Pr(”No”).

To assess the magnitude of variation among schools in the absence of explanatory
variables, we specify a simple 1-level model. This model has only the thresholds
and the school-specific intercepts as fixed effects:

log

∙
Pr(yij ≤ c | β0j)
Pr(yij > c | β0j)

¸
= γc − β0j, c = 1, 2.

The 2-level model is
β0j = γ00 + u0j ,

though the model is identifiable as long as the parameter γ00 is set to zero. This
reduces the 2-level model to β0j = u0j . Rather than treat the school-specific
intercepts β0j as fixed effects, we now regard the school-specific intercepts u0j
as random effects with variance σ2u0 . Next, we consider the introduction of
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explanatory variables into this model. Rowan, Raudenbush, and Cheong (1993)
hypothesized that teachers would express high levels of commitment if they had
a job with a high degree of task variety and also experienced a high degree of
control over school policies and teaching conditions. Conceptually, task variety
varies at the teacher level, while teacher control varies at the school level.

The level-1 model is

log

∙
Pr(yij ≤ c | xij , β0j)
Pr(yij > c | xij , β0j)

¸
= γc − (β0j + β1jtaskvarij) ,

while the level-2 model is

β0j = γ01(tcontrol)j + u0j ,

β1j = γ10.

The combined model is

log

∙
Pr(yij ≤ c | xij , zj , u0j)
Pr(yij > c | xij , zj , u0j)

¸
= γc − (γ01tcontrolj + γ10taskvarij + u0j) .

To fit these models with and without explanatory variables we use Sabre 5.0.

4.7.4 Sabre commands

log using teacher_s.log, replace
set more off
use teacher1
sabre, data tcommit tcontrol schlid
sabre tcommit tcontrol schlid, read
sabre, case schlid
sabre, yvar tcommit
sabre, ordered y
sabre, constant cons
sabre, lfit
sabre, dis m
sabre, dis e
sabre, fit
sabre, dis m
sabre, dis e
clear
use teacher2
sabre, data tcommit taskvar tcontrol schlid
sabre tcommit taskvar tcontrol schlid, read
sabre, case schlid
sabre, yvar tcommit
sabre, ordered y
sabre, constant cons
sabre, lfit tcontrol taskvar
sabre, dis m
sabre, dis e
sabre, fit tcontrol taskvar
sabre, dis m
sabre, dis e
log close
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clear
exit

4.7.5 Sabre log file

(Random Effects Model)

Univariate model
Standard ordered logit
Gaussian random effects

Number of observations = 661
Number of cases = 16

X-var df = 0
Cutpoint df = 2
Scale df = 1

Log likelihood = -662.66290 on 658 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -1.2480 0.13296
cut1 -1.0309 0.78614E-01
cut2 0.0000 0.0000
scale 0.33527 0.13507

(Random Effects Model)

Univariate model
Standard ordered logit
Gaussian random effects

Number of observations = 650
Number of cases = 16

X-var df = 2
Cutpoint df = 2
Scale df = 1

Log likelihood = -634.05978 on 645 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -1.2499 0.95459E-01
tcontrol -1.5410 0.36060
taskvar -0.34881 0.87745E-01
cut1 -1.0570 0.80838E-01
cut2 0.0000 0.0000
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scale 0.16144E-05 0.17659

4.7.6 Discussion

For the model without covariates, the results indicate that the estimated values
of the threshold parameters are 0.217 (γ1), 1.248 (γ2), and that the estimate of
the variance of the school-specific intercepts, σ2u0 , is (0.33527)

2 = 0.11241.

The model formulation summarizes the two equations as

log

∙
Pr(yij ≤ 1 | u0j)
Pr(yij > 1 | u0j)

¸
= 0.217− u0j ,

log

∙
Pr(yij ≤ 2 | u0j)
Pr(yij > 2 | u0j)

¸
= 1.248− u0j .

For the model with explanatory variables included, the two equations summa-
rizing these results are:

log

∙
Pr(yij ≤ 1 | xij , zj , u0j)
Pr(yij > 1 | xij , zj , u0j)

¸
= 0.193− [(−0.349taskvarij − 1.541tcontrolj + u0j)]

= 0.193 + 0.349taskvarij + 1.541tcontrolj − u0j ,

log

∙
Pr(yij ≤ 2 | xij , zj , u0j)
Pr(yij > 2 | xij , zj , u0j)

¸
= 1.248+0.349taskvarij+1.541tcontrolj−u0j .

The results indicate that, within schools, taskvar is significantly related to
commitment (γ10 = 0.349, ztest = 3.98); between schools, tcontrol is also
strongly related to commitment (γ01 = 1.541, ztest = 4.27). Inclusion of tcontrol
reduced the point estimate of the between-school variance to 0.000. This
suggests that we do not need random effects in the model with explanatory
variables. The model without the random effect u0j will be

log

∙
Pr(yij ≤ c | xij , zj)
Pr(yij > c | xij , zj)

¸
= γc + 0.349taskvarij + 1.541tcontrolj , c = 1, 2.
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For further discussion on ordered response models with random intercepts see:
Rabe-Hesketh and Skrondal (2005), and Wooldridge (2002).

4.8 Exercises

There are three ordered response model exercises, namely C4, L5 and L6.

4.9 References

McCullagh, P., (1980) ’Regression Models for Ordinal Data (with discussion)’,
Journal of the Royal Statistical Society B, vol. 42, 109 - 142.

Rabe-Hesketh, S., and Skrondal, A., (2005), Multilevel and Longitudinal Mod-
elling using Stata, Stata Press, Stata Corp, College Station, Texas.

Wooldridge, J., M., (2006), Introductory Econometrics: A Modern Approach.
Third edition. Thompson, Australia.
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Chapter 5

Multilevel Poisson Models

5.1 Introduction

Another important type of discrete data is count data. For example, for a
population of road crossings one might count the number of accidents in one
year; or for a population of doctors, one could count how often in one year they
are confronted with a certain medical problem. The set of possible outcomes of
count data is the set of natural numbers: 0, 1, 2, · · · . The standard distribution
for counts is the Poisson distribution. Suppose yij to be a variable distributed
randomly as Poisson(μij). Then we write

Pr(yij) =
exp(−μij)μyijij

yij !
, yij = 0, 1, · · · .

The Poisson distribution has some properties that we can make use of when
modelling our data. For example, the expected or mean value of y is equal to
the variance of y, so that

E(yij) = var(yij) = μij .

When we have Poisson distributed data, it is usual to use a logarithmic trans-
formation to model the mean, i.e. log(μij). This is the natural parameter for
modelling the Poisson distribution. There is no theoretical restriction, how-
ever, on using other transformations of μij , so long as the mean is positive, as
discussed in Dobson (1991).

Further, if the counts tend to be large, their distribution can be approximated
by a continuous distribution. If all counts are large enough, then it is advisable
to use the square root of the counts as the response variable and then fit the
model. The reason why this is a good approach resides in the fact that the square
root transformation succeeds very well in transforming the Poisson distribution
to an approximately homoscedastic normal distribution (the square root is the
so-called variance-stabilizing transformation for the Poisson distribution).

49
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If all or some of the counts are small, a normal distribution will not be satisfac-
tory.

5.2 Poisson Regression Models

In Poisson regression it is assumed that the response variable yij has a Poisson
distribution given the explanatory variables x1ij , x2ij , · · · , xpij ,

yij |x1ij , x2ij , · · · , xpij ∼ Poisson(μij),

where the log of the mean μij is assumed to be a linear function of the explana-
tory variables. That is,

log(μij) = β0j + β1jx1ij + β2jx2ij + · · ·+ βpjxpij ,

which implies that μij is the exponential function of independent variables,

μij = exp (β0j + β1jx1ij + β2jx2ij + · · ·+ βpjxpij) .

In models for counts it is quite usual that there is a variable Mij that is known
to be proportional to the expected counts. For example, if the count yij is the
number of events in some time interval of non-constant length mij , it is often
natural to assume that the expected count is proportional to this length of the
time period. In order to let the expected count be proportional to Mij , there
should be a term log(mij) in the linear model for log(μij), with a regression
coefficient fixed to 1. Such a term is called an offset in the linear model (see
e.g., McCullagh and Nelder, 1989; Goldstein, 2003). Therefore, the Poisson
regression model can be written in the following form:

log(μij) = log (mij) + β0j + β1jx1ij + β2jx2ij + · · ·+ βpjxpij .

The log(μij/mij) is modelled now as a linear function of explanatory variables.

5.3 The Two-Level Poisson Model

Let yij be the count for level-1 unit i in level-2 unit j, and μij be the expected
count, given that level-1 unit i is in level-2 unit j and given the values of the
explanatory variables. Then μij is necessarily a non-negative number, which
could lead to difficulties if we considered linear models for this value. The
natural logarithm is mostly used as the link function for expected counts. For
single-level data this leads to the Poisson regression model which is a linear
model for the natural logarithm of the counts, log(μij). For multilevel data,
hierarchical linear models are considered for the logarithm of μij .
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5.4 Level-1 Model

Consider a two-level multilevel Poisson model by assuming the level-1 units i
are nested within level-2 units j. Using the logarithmic transformation, the
level-1 model with P explanatory variables x1, · · · , xP may be written as

yij ∼ Poisson(μij),

log(μij) = log(mij) + β0j +
PX
p=1

βpjxpij ,

where β0j is an intercept parameter, and βpj , p = 1, · · · , P , are slope parameters
associated with explanatory variables xpij. The term log(mij) is included in the
model as an offset.

5.5 Level-2Model: The Random InterceptModel

The level-2 model has the same form as the level-2 model in the linear model,
binary and ordinal response models. Consider for example the random inter-
cept model formulated as a regression model plus a random intercept for the
logarithm of the expected count. As we are limited to random intercepts we
have:

βpj = γp0,

β0j = γ00 +

QX
q=1

γ0qzqj + u0j ,

so that

log(μij) = log(mij) + γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j .

The variance of the random intercept is denoted again by σ2u0 .

To transform the linear model back to the expected counts, the inverse trans-
formation of the natural logarithm must be used. Therefore, the explanatory
variables and the level-two random effects in the (additive) multilevel Poisson
regression model have multiplicative effects on the expected counts.
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5.6 Likelihood

L
¡
γ, σ2u0 |y,x, z

¢
=
Y
j

+∞Z
−∞

Y
i

g (yij|xij , zj,u0j) f (u0j) du0j ,

where

g (yij |xij , zj,u0j) =
exp(−μij)μyijij

yij !
,

and

f (u0j) =
1√
2πσu0

exp

Ã
−

u20j
2σ2u0

!
.

Sabre evaluates the integral L
¡
γ, σ2u0 |y,x, z

¢
for the Poisson model using normal

Gaussian quadrature or adaptive Gaussian quadrature (numerical integration).
There is not an analytic solution for this integral with normally distributed u0j .
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5.7 Example C5. Poisson Model of Prescribed
Medications

Cameron and Trivedi (1988) use various forms of overdispersed Poisson model to
study the relationship between type of health insurance and various responses
which measure the demand for health care, such as the total number of pre-
scribed medications used in the past 2 days. The data set they use in this
analysis is from the Australian Health survey for 1977-1978. A copy of the
original data set and further details about the variables in racd.dta can be
obtained from
http://cameron.econ.ucdavis.edu/racd/racddata.html.

5.7.1 References

Cameron, A.C., Trivedi, P.K., Milne, F., Piggott, J., (1988) A microeconometric
model of the demand for Health Care and Health Insurance in Australia, Review
of Economic Studies, 55, 85-106.

Cameron, A.C., Trivedi, P.K (1998), Regression Analysis of Count Data, Econo-
metric Society Monograph No.30, Cambridge University Press

5.7.2 Data description for racd.dta

Number of observations (rows): 5190
Number of level-2 cases: 5190

5.7.3 Variables

sex: 1 if respondent is female, 0 if male
age: respondent’s age in years divided by 100
agesq: age squared
income: respondent’s annual income in Australian dollars divided by 1000
levyplus: 1 if respondent is covered by private health insurance fund for private
patients in public hospital (with doctor of choice), 0 otherwise
freepoor: 1 if respondent is covered by government because low income, recent
immigrant, unemployed, 0 otherwise
freerepa: 1 if respondent is covered free by government because of old-age or
disability pension, or because invalid veteran or family of deceased veteran, 0
otherwise
illness: number of illnesses in past 2 weeks, with 5 or more weeks coded as 5
actdays: number of days of reduced activity in past two weeks due to illness or
injury
hscore: respondent’s general health questionnaire score using Goldberg’s method,
high score indicates poor health
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chcond1: 1 if respondent has chronic condition(s) but is not limited in activity,
0 otherwise
chcond2: 1 if respondent has chronic condition(s) and is limited in activity, 0
otherwise
dvisits: number of consultations with a doctor or specialist in the past 2 weeks
nondocco: number of consultations with non-doctor health professionals (chemist,
optician, physiotherapist, social worker, district community nurse, chiropodist
or chiropractor) in the past 2 weeks
hospadmi: number of admissions to a hospital, psychiatric hospital, nursing or
convalescent home in the past 12 months (5 or more admissions coded as 5)
hospdays: number of nights in a hospital, etc. during most recent admission,
in past 12 months
medicine: total number of prescribed and nonprescribed medications used in
past 2 days
prescrib: total number of prescribed medications used in past 2 days
nonpresc: total number of nonprescribed medications used in past 2 days
constant: 1 for all observations
id: ij

Like Cameron and Trivedi we take prescrib to be the Poisson response variable
and model it with a random intercept and a range of explanatory variables.

 sex age agesq income levyplus freepoor freerepa illness actdays hscore chcond1 chcond2 dvisits nondocco hospadmi hospdays medicine prescrib nonpresc constant id
1 0.19 0.04 0.55 1 0 0 1 4 1 0 0 1 0 0 0 1 1 0 1 1
1 0.19 0.04 0.45 1 0 0 1 2 1 0 0 1 0 0 0 2 1 1 1 2
0 0.19 0.04 0.90 0 0 0 3 0 0 0 0 1 0 1 4 2 1 1 1 3
0 0.19 0.04 0.15 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 4
0 0.19 0.04 0.45 0 0 0 2 5 1 1 0 1 0 0 0 3 1 2 1 5
1 0.19 0.04 0.35 0 0 0 5 1 9 1 0 1 0 0 0 1 1 0 1 6
1 0.19 0.04 0.55 0 0 0 4 0 2 0 0 1 0 0 0 0 0 0 1 7
1 0.19 0.04 0.15 0 0 0 3 0 6 0 0 1 0 0 0 1 1 0 1 8
1 0.19 0.04 0.65 1 0 0 2 0 5 0 0 1 0 0 0 1 0 1 1 9
0 0.19 0.04 0.15 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 10
0 0.19 0.04 0.45 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 11
0 0.19 0.04 0.25 0 0 1 2 0 2 0 0 1 0 1 80 1 1 0 1 12
0 0.19 0.04 0.55 0 0 0 3 13 1 1 0 2 0 0 0 0 0 0 1 13
0 0.19 0.04 0.45 0 0 0 4 7 6 1 0 1 0 0 0 0 0 0 1 14
0 0.19 0.04 0.25 1 0 0 3 1 0 1 0 1 0 0 0 2 2 0 1 15
0 0.19 0.04 0.55 0 0 0 2 0 7 0 0 1 0 0 0 3 2 1 1 16
0 0.19 0.04 0.45 1 0 0 1 0 5 0 0 2 0 0 0 1 1 0 1 17
1 0.19 0.04 0.45 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 18
1 0.19 0.04 0.45 1 0 0 1 0 0 0 0 2 0 0 0 1 1 0 1 19
1 0.19 0.04 0.35 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 20
1 0.19 0.04 0.45 1 0 0 1 3 0 0 0 1 0 0 0 0 0 0 1 21
1 0.19 0.04 0.35 1 0 0 1 0 1 0 0 1 0 0 0 2 1 1 1 22
0 0.19 0.04 0.45 1 0 0 2 2 0 0 0 1 0 0 0 0 0 0 1 23
0 0.19 0.04 0.55 0 0 0 2 14 2 0 0 1 0 0 0 1 1 0 1 24
1 0.19 0.04 0.25 0 0 1 2 14 11 0 1 1 0 1 11 5 5 0 1 25
1 0.19 0.04 0.15 0 1 0 1 2 6 1 0 1 0 0 0 2 2 0 1 26
1 0.19 0.04 0.55 0 0 0 2 5 6 0 0 1 0 0 0 1 1 0 1 27

First few lines and columns of racd.dta

5.7.4 Sabre commands

log using prescribe_s.log, replace
set more off
use racd
#delimit ;
sabre, data sex age agesq income levyplus freepoor freerepa illness actdays

hscore chcond1 chcond2 dvisits nondocco hospadmi hospdays medicine
prescrib nonpresc constant id;
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sabre sex age agesq income levyplus freepoor freerepa illness actdays hscore
chcond1 chcond2 dvisits nondocco hospadmi hospdays medicine prescrib
nonpresc constant id, read;

#delimit cr
sabre, case id
sabre, yvar prescrib
sabre, family p
sabre, constant cons
#delimit ;
sabre, lfit sex age agesq income levyplus freepoor freerepa illness actdays

hscore chcond1 chcond2 cons;
#delimit cr
sabre, dis m
sabre, dis e
#delimit ;
sabre, fit sex age agesq income levyplus freepoor freerepa illness actdays

hscore chcond1 chcond2 cons;
#delimit cr
sabre, dis m
sabre, dis e
log close
clear
exit

5.7.5 Sabre log file

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -2.7412 0.12921
sex 0.48377 0.36639E-01
age 2.6497 0.61491
agesq -0.88778 0.64292
income -0.44661E-02 0.55766E-01
levyplus 0.28274 0.52278E-01
freepoor -0.45680E-01 0.12414
freerepa 0.29584 0.59667E-01
illness 0.20112 0.10530E-01
actdays 0.29261E-01 0.36746E-02
hscore 0.20103E-01 0.63664E-02
chcond1 0.77565 0.46130E-01
chcond2 1.0107 0.53895E-01

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -2.8668 0.14908
sex 0.56080 0.43164E-01
age 2.0861 0.73513
agesq -0.26325 0.78264
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income 0.30450E-01 0.65221E-01
levyplus 0.27060 0.58009E-01
freepoor -0.61759E-01 0.13676
freerepa 0.29172 0.69172E-01
illness 0.20914 0.13260E-01
actdays 0.34688E-01 0.49475E-02
hscore 0.21604E-01 0.81424E-02
chcond1 0.77394 0.50771E-01
chcond2 1.0245 0.62314E-01
scale 0.52753 0.27207E-01

Univariate model
Standard Poisson
Gaussian random effects

Number of observations = 5190
Number of cases = 5190

X-var df = 13
Scale df = 1

Log likelihood = -5443.3311 on 5176 residual degrees of freedom

5.7.6 Discussion

This shows that even with a range of explanatory variables included in the
model, there is still a highly significant amount of between-respondent varia-
tion in the total number of prescribed medications used in the past 2 days, as
indicated by the scale parameter estimate of 0.52753 (s.e.0.027207).

The random effect model parameter estimates differ slightly from those of the
homogeneous model. If the random effect model is the true model, then asymp-
totically both the homogeneous and random effect model estimates will tend to
the same limit. As expected the standard errors for the random effect model
estimates are larger than those of the homogeneous model.

In this analysis we only have 1 response for each subject. We do not need
multiple responses to identify the extra variation in Poisson counts. However,
having multiple responses for each subject would give two ways to identify the
extra variation: (1) from the extra variation in each of a subject’s responses and
(2) from the correlation between the different responses of each subject.
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For further discussion on Poisson models with random intercepts see: Cameron
and Trivedi (1998), Rabe-Hesketh and Skrondal (2005) and Wooldridge (2002).

5.8 Exercises

There are two Poisson response model exercises, namely C5 and L8.

5.9 References

Cameron, A., Trivedi, P.K., (1998), Regression Analsyis of Count Data, Cam-
bridge, Cambridge University Press.

Rabe-Hesketh, S., and Skrondal, A., (2005), Multilevel and Longitudinal Mod-
elling using Stata, Stata Press, Stata Corp, College Station, Texas.

Wooldridge, J. M. (2002), Econometric Analysis of Cross Section and Panel
Data, MIT Press, Cambridge Mass.
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Chapter 6

Two-Level Generalised
Linear Mixed Models

6.1 Introduction

The main models we have considered so far, namely linear, binary response
and Poisson models, are special cases of the generalised linear model (GLM) or
exponential family. It will help us in considering extensions of these models to 3
levels, and to multivariate responses, if we can start to write each of the models
using GLM notation. In generalised linear models, the explanatory variables
and the random effects (for a 2-level model these are xij,zj and u0j) affect the
response (for a 2-level model this is yij) via the linear predictor (θij) , where

θij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j .

The GLM is obtained by specifying some function of the response (yij) condi-
tional on the linear predictor and other parameters, i.e.

g (yij | θij , φ) = exp {[yijθij − b (θij)] /φ+ c (yij , φ)} ,

where φ is the scale parameter, b (θij) is a function that gives the conditional
mean (μij) and variance of yij , namely

E [yij | θij , φ] = μij = b
0
(θij) ,

V ar [yij | θij , φ] = φb
00
(θij) .

In GLMs the mean and variance are related so that

V ar [yij | θij , φ] = φb
00
³
b
0−1
(θij)

´
= φV [μij ] .

59



60 6. Two-Level Generalised Linear Mixed Models

V (μij) is called the variance function. The function b
0−1
(θij) which expresses

θij as a function of μij is called the link function, and b
0
(θij) is the inverse link

function.

Both b (θij) and c (yij , φ) differ for different members of the exponential family.

6.2 The Linear Model

If we rewrite the linear model from an earlier section as

g (yij |xij , zj , u0j) = g (yij | θij , φ)

=
1√
2πσε

exp

Ã
− [yij − μij ]

2

2σ2ε

!
,

then we can write

g (yij | θij , φ) = exp
(
1

2σ2ε

Ã
yijμij −

μ2ij
2

!
+

Ã
ln (2πσε)

2
−

y2ij
2σ2ε

!)
,

so that

θij = μij ,

φ = σ2ε ,

b (θij) =
θ2ij
2
,

c (yij , φ) =
ln (2πσε)

2
−

y2ij
2σ2ε

.

The mean (μij) and variance functions are

μij = θij ,

V [μij ] = 1.

Note that in the linear model, the mean and variance are not related as

φV [μij ] = σ2ε .

Also the link function is the identity as θij = μij . We define this model by
Gaussian error g, identity link i.
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6.3 Binary Response Models

If we rewrite the binary response model from an earlier section as

g (yij |xij , zj , u0j) = g (yij | θij , φ)
= μ

yij
ij (1− μij)

1−yij ,

then we can write

g (yij | θij , φ) = exp {yij lnμij + (1− yij) ln(1− μij)}

= exp

½
yij ln

µ
μij

(1− μij)

¶
+ ln(1− μij)

¾
,

so that

θij = ln

µ
μij

(1− μij)

¶
,

φ = 1,

b (θij) = ln(1− μij),

c (yij , φ) = 0.

The mean (μij) and variance functions are

μij =
exp (θij)

1 + exp (θij)
,

V [μij ] =
exp (θij)

{1 + exp (θij)}2
.

Note that in the binary response model, the mean and variance are related as

φV [μij ] = μij (1− μij) .

Also θij = ln
³

μij
1−μij

´
, and the logit model (logit link) has

μij =
exp (θij)

1 + exp (θij)
.

The probit model (probit link) has μij = Φ (θij) , or Φ−1 (μij) = θij , where
Φ (.) is the standard normal cumulative distribution function. The comple-
mentary log log model (cloglog link) has θij = log {− log (1− μij)} , or μij =
1− exp (− exp θij) .

We define the binary response model with binomial error b, and logit, probit or
cloglog link.



62 6. Two-Level Generalised Linear Mixed Models

6.4 Poisson Model

If we rewrite the Poisson model from an earlier section as

g (yij |xij, zj , u0j) = g (yij | θij , φ)

=
exp(−μij)μyijij

yij !
,

then we can write

g (yij | θij , φ) = exp {[yij lnμij − μij ]− log yij !)} ,

so that

θij = lnμij ,

φ = 1,

b (θij) = μij = exp θij ,

c (yij , φ) = − log yij !.

The mean (μij) and variance functions are

μij = exp (θij) ,

V [μij ] = μij .

Note that in the Poisson model, the mean and variance are related as

φV [μij ] = μij .

The link function is the log link as θij = lnμij . We define the Poisson model
with Poisson error p, and logit g , probit p or cloglog c link.

6.5 Two-Level Generalised Linear Model Likeli-
hood

We can now write the 2-level Generalised Linear Model (Generalised Linear
Mixed Model) likelihood for the linear model, binary response and Poisson mod-
els in a general form, i.e.

L
¡
γ, φ, σ2u0 |y,x, z

¢
=
Y
j

Z Y
i

g (yij | θij , φ) f (u0j) du0j ,

where
g (yij | θij , φ) = exp {[yijθij − b (θij)] /φ+ c (yij , φ)} ,
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θij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j ,

and

f (u0j) =
1√
2πσu0

exp

Ã
−

u20j
2σ2u0

!
.

For the linear model we have identity link , Gaussian (normal) error, for the
binary model we have logit, probit, cloglog link, binomial error, and for the
Poisson model we have log link and Poisson error. Sabre evaluates the inte-
gral L

¡
γ, φ, σ2u0 |y,x, z

¢
for the multilevel GLM model using normal Gaussian

quadrature or adaptive Gaussian Quadrature (numerical integration).

For further discussion on GLMMs see Aitkin (1996, 1999)

6.6 References

Aitkin, M., (1996), A general maximum likelihood analysis of overdispersion in
generalized linear models. Statistics and Computing, 6:251—262.

Aitkin, M., (1999), A general maximum likelihood analysis of variance compo-
nents in generalized linear models. Biometrics, 55:218—234.
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Chapter 7

Three-Level Generalised
Linear Mixed Models

7.1 Introduction

The extension of the two-level regression model to three and more levels is
reasonably straightforward. In this section we consider the three-level random
intercept GLM.

7.2 Three-Level Random Intercept Models

In a previous example, data were used where students were nested within
schools. The actual hierarchical structure of educational data is more usually
students nested within classes nested within schools. For the time being we
concentrate on ’simple’ three-level hierarchical data structures. The response
variable now needs to acknowledge the extra level and is denoted by yijk, refer-
ring to, e.g., the response of student i in class j in school k. More generally,
one can talk about level-one unit i in level-two unit j in level-three unit k. The
three-level model for such data with one level-1 explanatory variable may be
formulated through the linear predictor. In this simple example we only use
one level-1 covariate xijk,so that

θijk = β0jk + β1jkxijk,

where β0jk is the intercept in level-two unit j within level-three unit k. For the
intercept we have the level-two model,

β0jk = δ00k + u0jk,

β1jk = γ100,

65
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where δ00k is the average intercept in level-three unit k. For this average
intercept we have the level-three model,

δ00k = γ000 + v00k,

and hence by substituting, the linear predictor takes the form

θijk = γ000 + γ100xijk + v00k + u0jk.

7.3 Three-Level GLM

By using ijk subscripts for various terms of a GLM and by adding the level-3
explanatory covariates wk and the level-2 explanatory variables zjk, we get the
3-level GLM, where

g (yijk | θijk, φ) = exp {[yijkθijk − b (θijk)] /φ+ c (yijk, φ)} ,

θijk = γ000 +
PX
p=1

γp00xpijk +

QX
q=1

γ0q0zqjk +
RX
r=1

γ00rwrk + v00k + u0jk.

The conditional mean (μijk) and variance of yijk become

E [yijk | θijk, φ] = μijk = b
0
(θijk) ,

V ar [yijk | θijk, φ] = φb
00
(θijk) ,

and
V ar [yijk | θijk, φ] = φb

00
³
b
0−1
(θijk)

´
= φV [μijk] ,

where b (θijk) and c (yijk, φ) differ for different members of the exponential
family.

For GLMs we can consider the covariances between the different linear predictors
θijk and θi0jk of different pupils i and i0 in the same class of a given school and
between different pupils j and j0 in different classes of the same school, i.e.
different linear predictors θijk and θi0j0k of

covar (θijk, θi0jk | xijk, zjk, wk) = σ2u0 + σ2v00 ,

covar (θijk, θi0j0k | xijk, zjk, wk) = σ2v00 ,

so that the covariance of different pupils in the same class in a given school is
higher than that of pupils of different classes of a given school.

7.4 Linear model

For the linear regression model

yijk = θijk + εijk,
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there are three residuals, as there is variability on three levels. Their variances
are denoted by

var(εijk) = σ2ε , var(u0jk) = σ2u0 , var(v00k) = σ2v00 .

The total variance between all level-one units now equals σ2ε + σ2u0 + σ2v00 , and
the total variance of the level-two units is σ2u0 + σ2v

00)
.

There are several kinds of intraclass correlation coefficient in a three-level model:

Proportion of the total variance from level one:

σ2ε
σ2ε + σ2u

0
+ σ2v

00

.

Proportion of the total variance from level two:

σ2u
0

σ2ε + σ2u0 + σ2v00
.

Proportion of the total variance from level three:

σ2v00
σ2ε + σ2u0 + σ2v00

.

Proportion of the total variance from levels one and two:

σ2ε + σ2u0
σ2ε + σ2u0 + σ2v00

.

The correlation between different level-1 units (e.g. pupils) of a given level-2
unit (e.g. class) and level-3 unit (e.g. school) is

cor (yijk, yi0jk | x, z, w) =
σ2u0 + σ2v00

σ2ε + σ2u0 + σ2v00
,

and the correlation between different level-1 units of different level-2 units for a
given level-3 unit is

cor (yijk, yi0j0k | x, z,w) =
σ2v00

σ2ε + σ2u0 + σ2v00
,

so that cor (yijk, yi0jk | x, z, w) > cor (yijk, yi0j0k | x, z, w) , i 6= i0, j 6= j0

7.5 Binary Response Model

Discussion of the binary response model focuses on correlations between the
different latent responses, e.g. y∗ijk, y

∗
i0jk and y∗ijk, y

∗
i0j0k, i 6= i0, j 6= j0 where

y∗ijk = θijk + εijk.
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For the probit model these correlations are

cor
¡
y∗ijk, y

∗
i0jk | x, z, w

¢
=

σ2u0 + σ2v00
σ2u0 + σ2v00 + 1

,

cor
¡
y∗ijk, y

∗
i0j0k | x, z,w

¢
=

σ2v00
σ2u0 + σ2v

00
+ 1

,

as var(εijk) = 1.

For the logit model var(εijk) = π2

3 and we replace the 1 in the denominator by
π2

3 .

7.6 Three-Level Generalised Linear Model Like-
lihood

The 3-level GLM likelihood takes the form

L
¡
γ, φ, σ2u0 , σv00 |y,x, z,w

¢
=
Y
k

+∞Z
−∞

+∞Z
−∞

Y
j

Y
i

g (yijk | θijk, φ) f (u0jk) f (v00k) du0jkdv00k,

where

g (yijk | θijk, φ) = exp {[yijkθijk − b (θijk)] /φ+ c (yijk, φ)} ,

θijk = γ000 +
PX
p=1

γp00xpijk +

QX
q=1

γ0q0zqjk +
RX
r=1

γ00rwrk + v00k + u0jk,

and

f (u0jk) =
1√
2πσu0

exp

Ã
−
u20jk
2σ2u0

!
,

f (v00k) =
1√

2πσv00
exp

µ
− v200k
2σ2v00

¶
.

For the linear model we have identity link, Gaussian (normal) error, for the
binary model we have one of logit, probit, cloglog link, binomial error, and
for the Poisson model we have log link and Poisson error. Sabre evaluates the
integral L

¡
γ, φ, σ2u0 , σv00 |y,x, z,w

¢
for the multilevel GLM model using normal

Gaussian quadrature or adaptive Gaussian quadrature (numerical integration).
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7.7 Example 3LC2. Binary response model: Guatemalan
mothers using prenatal care for their chil-
dren (1558 mothers in 161 communities)

The data (guatemala_prenat.dta) we use in this example are from Rodríguez
and Goldman (2001), and are about the use of modern prenatal care. The
data set has 2449 observations on children with a binary indicator for whether
the mother had prenatal care, there are 25 covariates. The variables include
the level-2 mother identifier (mom), the community or cluster (level-3) iden-
tifier, a binary indicator of the use of prenatal care for each child and other
child-family, and community-level explanatory variables. The explanatory vari-
ables are either continuous variables (pcind81: proportion indigenous in 1981
and ssdist: distance to nearest clinic) or 0-1 dummy variables (all others)
representing discrete factors coded using the reference categories. Reference
categories are child aged 0-2 years, mother aged <25 years, birth order 1 (eldest
child), ladino (a Spanish term used to describe various socio-ethnic categories
in Central America), mother with no education, husband with no education,
husband not working or in unskilled occupation, no modern toilet in household,
and no television in the household.

7.7.1 References

G. Rodríguez and N. Goldman (2001) Improved estimation procedures for mul-
tilevel models with binary response, Journal of the Royal Statistics Society,
Series A, Statistics in Society, Volume 164, Part 2, pages 339-355

7.7.2 Data description for guatemala_prenat.dta

Number of observations: 2449
Number of level-2 cases (‘mom’ = identifier for mothers): 1558
Number of level-3 cases (‘cluster’ = identifier for communities): 161

7.7.3 Variables

The variables appear in the same order as in Table 3 in G. Rodríguez and N.
Goldman (2001) and are:

kid: child id (2449 kids)
mom: family id (1558 families)
cluster: cluster id (161 communities)
prenat: 1 if used modern prenatal care, 0 otherwise
kid3p: 1 if child aged 3-4 years, 0 otherwise
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mom25p: 1 if mother aged 25+ years, 0 otherwise
order23: 1 if birth order 2-3, 0 otherwise
order46: 1 if birth order 4-6, 0 otherwise
order7p: 1 if birth order 7+, 0 otherwise
indnospa: 1 if indigenous, speaks no Spanish, 0 otherwise
inspa: 1 if indgenous, speaks Spanish, 0 otherwise
momedpri: 1 if mother’s education primary, 0 otherwise
momedsec: 1 if mother’s education secondary+, 0 otherwise
husedppri: 1 if husband’s education primary, 0 otherwise
husedsec: 1 if husband’s education secondary+, 0 otherwise
huseddk: 1 if husband’s education missing, 0 otherwise
husprof: 1 if husband professional, sales, clerical, 0 otherwise
husagrself: 1 if husband agricultural self-employed, 0 otherwise
husagremp: 1 if husband agricultural employee, 0 otherwise
husskilled: 1 if husband skilled service, 0 otherwise
toilet: 1 if modern toilet in household, 0 otherwise
tvnotdaily: 1 if television not watched daily, 0 otherwise
tvdaily: 1 if television watched daily, 0 otherwise
pcind81: proportion indigenous in 1981
ssdist: distance to nearest clinic

 kid mom cluster prenat kid3p mom25p order23 order46 order7p indnospa indspa momedpri momedsec
2 2 1 1 1 0 0 0 0 0 0 0 1

269 185 36 1 0 0 1 0 0 0 0 1 0
270 186 36 1 0 0 1 0 0 0 0 1 0
271 186 36 1 0 0 1 0 0 0 0 1 0
273 187 36 1 1 0 1 0 0 0 0 1 0
275 188 36 1 1 0 1 0 0 0 0 1 0
276 189 36 1 1 0 1 0 0 0 0 0 1
277 190 36 1 0 1 0 0 1 0 0 1 0
278 190 36 1 1 1 0 1 0 0 0 1 0
279 191 36 1 0 1 0 0 1 0 0 1 0
280 191 36 1 1 1 0 1 0 0 0 1 0
281 192 36 1 0 0 1 0 0 0 0 0 1
299 204 38 1 0 1 0 1 0 0 0 1 0
301 206 38 1 1 1 0 1 0 0 0 1 0
302 207 38 1 0 0 0 0 0 0 0 0 0
358 245 45 1 0 1 1 0 0 0 0 1 0
359 245 45 1 1 0 1 0 0 0 0 1 0
360 246 45 0 0 1 0 0 1 0 0 1 0
361 246 45 1 0 1 0 0 1 0 0 1 0
362 246 45 1 1 1 0 1 0 0 0 1 0
363 247 45 0 0 1 0 0 0 0 0 1 0
364 248 45 1 0 1 0 1 0 0 0 1 0
365 248 45 1 0 1 1 0 0 0 0 1 0
366 249 45 0 0 1 0 1 0 0 0 0 0
367 249 45 0 1 1 0 1 0 0 0 0 0
370 251 45 1 0 1 0 0 1 0 0 0 0
372 252 45 0 1 1 0 0 1 0 0 1 0

First few lines of guatemala_prenat.dta
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7.7.4 Sabre commands

log using guatemala_prenat_s.log, replace
set more off
use guatemala_prenat
#delimit ;
sabre, data kid mom cluster prenat kid3p mom25p order23 order46 order7p

indnospa indspa momedpri momedsec husedpri husedsec huseddk husprof
husagrself husagremp husskilled toilet tvnotdaily tvdaily pcind81
ssdist;

sabre kid mom cluster prenat kid3p mom25p order23 order46 order7p indnospa
indspa momedpri momedsec husedpri husedsec huseddk husprof husagrself
husagremp husskilled toilet tvnotdaily tvdaily pcind81 ssdist, read;

#delimit cr
sabre, case first=mom second=cluster
sabre, yvar prenat
sabre, constant cons
#delimit ;
sabre, lfit kid3p mom25p order23 order46 order7p indnospa indspa momedpri

momedsec husedpri husedsec huseddk husprof husagrself husagremp
husskilled toilet tvnotdaily tvdaily pcind81 ssdist cons;

#delimit cr
sabre, dis m
sabre, dis e
sabre, mass first=36 second=36
#delimit ;
sabre, fit kid3p mom25p order23 order46 order7p indnospa indspa momedpri

momedsec husedpri husedsec huseddk husprof husagrself husagremp
husskilled toilet tvnotdaily tvdaily pcind81 ssdist cons;

#delimit cr
sabre, dis m
sabre, dis e
log close
clear
exit

7.7.5 Sabre log file

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) 0.71862 0.28529
kid3p -0.20175 0.96881E-01
mom25p 0.32066 0.12710
order23 -0.95341E-01 0.13947
order46 -0.22862 0.16476
order7p -0.18506 0.20115
indnospa -0.83905 0.21406
indspa -0.56985 0.16529
momedpri 0.30643 0.10590
momedsec 1.0126 0.28988
husedpri 0.18462 0.11720
husedsec 0.67692 0.23795
huseddk 0.44553E-02 0.18098
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husprof -0.32309 0.27313
husagrself -0.53762 0.23648
husagremp -0.69955 0.24155
husskilled -0.36924 0.24374
toilet 0.46521 0.15146
tvnotdaily 0.32393 0.23313
tvdaily 0.46586 0.15248
pcind81 -0.90249 0.20778
ssdist -0.11460E-01 0.21866E-02

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) 3.5458 1.7266
kid3p -1.0008 0.30401
mom25p 1.0253 0.52416
order23 -0.70703 0.45506
order46 -0.50441 0.64071
order7p -0.97271 0.84425
indnospa -5.3249 1.5925
indspa -2.8742 1.0720
momedpri 1.8261 0.66167
momedsec 3.9093 1.6070
husedpri 0.80819 0.68186
husedsec 3.4292 1.3501
huseddk 0.57825E-01 1.0320
husprof -0.38403 1.5648
husagrself -1.7913 1.4116
husagremp -2.5822 1.4512
husskilled -0.74278 1.4095
toilet 1.8823 0.95965
tvnotdaily 1.4256 1.3987
tvdaily 1.4827 0.94111
pcind81 -4.5496 1.6165
ssdist -0.50489E-01 0.19281E-01
scale2 7.0869 0.94235
scale3 3.6790 0.61058

Univariate model
Standard logit
Gaussian random effects

Number of observations = 2449
Number of level 2 cases = 1558
Number of level 3 cases = 161

X-var df = 22
Scale df = 2

Log likelihood = -1056.8670 on 2425 residual degrees of freedom
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7.7.6 Discussion

In this example we use standard Gaussian quadrature with 36 mass points at
each level. The results show that there are significant estimated level-2 mother
effects (scale2 =7.0869 (s.e. 0.94235)) and level-3 community effects (scale3
=3.6790 (s.e. 0.61058)). The highest correlation in prenatal care is between
children of the same mother. Adding the level-2 and level-3 random effects
to the linear predictor of a binary response model causes a change in scale of
the covariate parameters and a reduction in their significance (relative to the
homogeneous model).
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For further discussion on 3-level generalised linear models see: Goldstein, (1987),
Rabe-Hesketh and Skrondal (2005) and Raudenbush and Bryk (2002)

7.8 Exercises

There are four exercises to accompany this section. Exercise 3LC1 is for a
linear model of pupil scores on several questions, where pupils (level 2) are
within Schools (level 3). Exercise 3LC2 is for cognative performance on several
occasions measured as a binary response of subjects (level 2) within families
(level 3). Exercise 3LC3 is for immunization (binary response) of children of
mothers (level 2) within comunities (level 3) Exercise 3LC4 is for cancer deaths
(Poisson count) of counties within regions (level 2) within nations (level 3).

7.9 References

Goldstein, H., (1987), Multilevel Models in Educational and Social Research,
Griffin, London.

Rabe-Hesketh, S., and Skrondal, A., (2005), Multilevel and Longitudinal Mod-
elling using Stata, Stata Press, Stata Corp, College Station, Texas.

Raudenbush, S.W., and Bryk, A.S., (2002), Hierachical Linear Models, Sage,
Thousand Oakes, CA.



Chapter 8

Multivariate Two-Level
Generalised Linear Mixed
Models

8.1 Introduction

We now introduce the superscript r to enable us to distinguish the different
models, variates, random effects etc of a multivariate response. There are many
examples of this type of data. For instance in a bivariate example the responses
could be the wages

¡
y1ij , r = 1

¢
and trade union membership

¡
y2ij , r = 2

¢
of an

individual j over successive years i. In a different context, Cameron and Trivedi
(1988) use various forms of overdispersed Poisson models to study the relation-
ship between type of health insurance and various responses which measure the
demand for health care, e.g. number of consultations with a doctor or specialist¡
y1ij
¢
and the number of prescriptions

¡
y2ij
¢
. An event history example occurs

in the modelling of the sequence of months i of job vacancies j, which last un-
til either they are successfully filled

¡
y1ij
¢
or withdrawn

¡
y2ij
¢
from the market.

These data lead to a correlated competing risk model as the firm effects are
present in both the filled and lapsed durations, see Andrews et al. at
http://www.lancs.ac.uk/staff/ecasb/papers/vacdur_economica.pdf.

A trivariate example is the joint (simultaneous equation) modelling of wages¡
y1ij
¢
, training

¡
y2ij
¢
and promotion

¡
y3ij
¢
of individuals j over time i present

in a panel survey such as the British Household Panel Survey (BHPS). Joint
modelling of simultaneous responses like allows us to disentangle the direct
effects of the different

¡
yrij
¢
on each other from any correlation that occurs in

the random effects. Without a multivariate multilevel GLM for complex social
process like these we risk inferential errors.

75
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The multivariate GLM is obtained from the univariate GLM (see earlier sec-
tions) by specifying the probability of the response

¡
yrij
¢
conditional on the

linear predictor and other parameters for each response (r), i.e.

gr
¡
yrij | θrij , φr

¢
= exp

©£
yrijθ

r
ij − br

¡
θrij
¢¤
/φr + cr

¡
yrij , φ

r
¢ª

,

where φr is the scale parameter, br
¡
θrij
¢
is a function that gives the conditional

mean
¡
μrij
¢
and variance of yrij , namely

E
£
yrij | θrij , φr

¤
= μrij = br

0 ¡
θrij
¢
,

V ar
£
yrij | θrij , φr

¤
= φrbr

00 ¡
θrij
¢
,

where the linear predictor
¡
θrij
¢
is given by

θrij = γr00 +
PX
p=1

γrp0xpij +

QX
q=1

γr0qzqj + ur0j , r = 1, 2, · · · , R.

Both br
¡
θrij
¢
and cr

¡
yrij , φ

r
¢
differ for different members of the exponential

family and can be different for different r, r = 1, 2, · · · , R.

8.2 Multivariate 2-Level Generalised LinearMixed
Model Likelihood

We can now write the multivariate 2-level GLM (MGLMM) in general form, i.e.

L (γ, φ,Σu0 |y,x, z) =
Y
j

∞Z
· · ·
Z

−∞

Y
i

Y
r

gr
¡
yrij | θrij, φr

¢
f (u0j) du0j ,

where γ =
£
γ1, γ2, ..., γR

¤
, γr has the covariate parameters of the linear predictor

θrij , the scale parameters are φ =
£
φ1, φ2, ..., φR

¤
,and f (u0j) is a multivariate

normal distribution of dimension R with mean zero and variance-covariance
structure Σu0 .

Sabre evaluates the integral L (γ, φ,Σu0 |y,x, z) in up to 3 dimensions using
normal Gaussian quadrature or adaptive Gaussian quadrature (numerical inte-
gration).
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8.3 Example C6. Bivariate PoissonModel: Num-
ber of Visits to the Doctor and Number of
Prescriptions

In the 2-level model notation the linear predictor of the bivariate Poisson GLM
takes the form

θrij = γr00 +
P rX
p=1

γrp0x
r
pij +

QrX
q=1

γr0qz
r
qj + ur0j .

The parameters of this model are γ =
£
γ1, γ2

¤
, where γr represents the parame-

ters of the linear predictors, plus the two variances σ1u0 and σ2u0 of the random
intercepts

£
u10j , u

2
0j

¤
and their correlation is denoted by ρ12.

Cameron and Trivedi (1988) use various forms of overdispersed Poisson models
to study the relationship between type of health insurance and various responses
which measure the demand for health care, e.g. number of consultations with
a doctor or specialist. The data set they use in this analysis is from the Aus-
tralian Health survey for 1977-1978. In a later work Cameron and Trivedi
(1998) estimate a bivariate Poisson model for two of the measures of the de-
mand for health care. We use a version of the Cameron and Trivedi (1988)
data set (visit-prescribe.dta) for the bivariate model. In this example we
only have one pair of responses r(dvisits, prescrib) for each sampled indi-
vidual. A copy of the original data set and further details about the variables
in visit-prescribe.dta can be obtained from
http://cameron.econ.ucdavis.edu/racd/racddata.html

The σ1u0 , σ
2
u0 and ρ12 can be identified when i = j = 1 in bivariate Poisson data.

The parameters σ1u0 and σ2u0 are not identifiable when i = j = 1 in the binary
response-linear model, and to identify these parameters we require i > 1.

8.3.1 References

Cameron, A.C., Trivedi, P.K., Milne, F., Piggott, J., (1988) A microeconometric
model of the demand for Health Care and Health Insurance in Australia, Review
of Economic Studies, 55, 85-106.

Cameron, A.C., Trivedi, P.K (1998), Regression Analysis of Count Data, Econo-
metric Society Monograph No.30, Cambridge University Press.

8.3.2 Data description for visit-prescribe.dta

Number of observations (rows): 10380
Number of level-2 cases: 5190
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8.3.3 Variables

sex: 1 if respondent is female, 0 if male
age: respondent’s age in years divided by 100
agesq: age squared
income: respondent’s annual income in Australian dollars divided by 1000
levyplus: 1 if respondent is covered by private health insurance fund for private
patients in public hospital (with doctor of choice), 0 otherwise
freepoor: 1 if respondent is covered by government because low income, recent
immigrant, unemployed, 0 otherwise
freerepa: 1 if respondent is covered free by government because of old-age or
disability pension, or because invalid veteran or family of deceased veteran, 0
otherwise
illness: number of illnesses in past 2 weeks with 5 or more coded as 5
actdays: number of days of reduced activity in past two weeks due to illness or
injury
hscore: respondent’s general health questionnaire score using Goldberg’s method,
high score indicates poor health
chcond1: 1 if respondent has chronic condition(s) but not limited in activity, 0
otherwise
chcond2: 1 if respondent has chronic condition(s) and limited in activity, 0
otherwise
dvisits: number of consultations with a doctor or specialist in the past 2 weeks
nondocco: number of consultations with non-doctor health professionals (chemist,
optician, physiotherapist, social worker, district community nurse, chiropodist
or chiropractor) in the past 2 weeks
hospadmi: number of admissions to a hospital, psychiatric hospital, nursing or
convalescent home in the past 12 months (up to 5 or more admissions which is
coded as 5)
hospdays: number of nights in a hospital, etc. during most recent admission,
in past 12 months
medicine: total number of prescribed and nonprescribed medications used in
past 2 days
prescrib: total number of prescribed medications used in past 2 days
nonpresc: total number of nonprescribed medications used in past 2 days
constant: 1 for all observations
id: respondent identifier
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 ij r sex age agesq income levyplus freepoor freerepa illness actdays hscore chcond1 chcond2 dvisits nondocco hospadmi hospdays medicine prescrib nonpresc constant id y r1 r2
1 1 1 0.19 0.04 0.55 1 0 0 1 4 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0
1 2 1 0.19 0.04 0.55 1 0 0 1 4 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1
2 1 1 0.19 0.04 0.45 1 0 0 1 2 1 0 0 1 0 0 0 2 1 1 1 2 1 1 0
2 2 1 0.19 0.04 0.45 1 0 0 1 2 1 0 0 1 0 0 0 2 1 1 1 2 1 0 1
3 1 0 0.19 0.04 0.90 0 0 0 3 0 0 0 0 1 0 1 4 2 1 1 1 3 1 1 0
3 2 0 0.19 0.04 0.90 0 0 0 3 0 0 0 0 1 0 1 4 2 1 1 1 3 1 0 1
4 1 0 0.19 0.04 0.15 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 4 1 1 0
4 2 0 0.19 0.04 0.15 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 4 0 0 1
5 1 0 0.19 0.04 0.45 0 0 0 2 5 1 1 0 1 0 0 0 3 1 2 1 5 1 1 0
5 2 0 0.19 0.04 0.45 0 0 0 2 5 1 1 0 1 0 0 0 3 1 2 1 5 1 0 1
6 1 1 0.19 0.04 0.35 0 0 0 5 1 9 1 0 1 0 0 0 1 1 0 1 6 1 1 0
6 2 1 0.19 0.04 0.35 0 0 0 5 1 9 1 0 1 0 0 0 1 1 0 1 6 1 0 1
7 1 1 0.19 0.04 0.55 0 0 0 4 0 2 0 0 1 0 0 0 0 0 0 1 7 1 1 0
7 2 1 0.19 0.04 0.55 0 0 0 4 0 2 0 0 1 0 0 0 0 0 0 1 7 0 0 1
8 1 1 0.19 0.04 0.15 0 0 0 3 0 6 0 0 1 0 0 0 1 1 0 1 8 1 1 0
8 2 1 0.19 0.04 0.15 0 0 0 3 0 6 0 0 1 0 0 0 1 1 0 1 8 1 0 1
9 1 1 0.19 0.04 0.65 1 0 0 2 0 5 0 0 1 0 0 0 1 0 1 1 9 1 1 0
9 2 1 0.19 0.04 0.65 1 0 0 2 0 5 0 0 1 0 0 0 1 0 1 1 9 0 0 1
10 1 0 0.19 0.04 0.15 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 10 1 1 0

First few lines and columns of racd.dta

Like Cameron and Trivedi we take dvisits and prescrib to be the Poisson
response variables and model them with a random intercept and a range of
explanatory variables. We cross tabulate dvisits by nonprescribe in the
following table.

 nonpresc
dvisits 0 1 2 3 4 5 6 7 8 total

0 3021 866 180 55 10 4 2 2 1 4141
1 586 145 37 6 4 2 0 2 0 782
2 132 31 9 1 1 0 0 0 0 174
3 23 6 0 0 0 1 0 0 0 30
4 20 2 1 1 0 0 0 0 0 24
5 7 1 1 0 0 0 0 0 0 9
6 10 2 0 0 0 0 0 0 0 12
7 10 1 0 1 0 0 0 0 0 12
8 4 1 0 0 0 0 0 0 0 5
9 1 0 0 0 0 0 0 0 0 1

total 3814 1055 228 64 15 7 2 4 1 5190

Is the assumption of independence between dvisits and nonprescribe realis-
tic?

Note that in this example i : 1 for both responses as we only observe 1 dvisits
and 1 prescrib for each individual.

8.3.4 Sabre commands

log using visit-prescribe_s.log, replace
set more off
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use visit-prescribe
#delimit ;
sabre, data ij r sex age agesq income levyplus freepoor freerepa illness

actdays hscore chcond1 chcond2 dvisits nondocco hospadmi hospdays
medicine prescrib nonpresc constant id y r1 r2;

sabre ij r sex age agesq income levyplus freepoor freerepa illness actdays
hscore chcond1 chcond2 dvisits nondocco hospadmi hospdays medicine
prescrib nonpresc constant id y r1 r2, read;

#delimit cr
sabre, case id
sabre, yvar y
sabre, model b
sabre, rvar r
sabre, family first=p second=p
sabre, constant first=r1 second=r2
sabre, trans r1_sex r1 * sex
sabre, trans r1_age r1 * age
sabre, trans r1_agesq r1 * agesq
sabre, trans r1_income r1 * income
sabre, trans r1_levyplus r1 * levyplus
sabre, trans r1_freepoor r1 * freepoor
sabre, trans r1_freerepa r1 * freerepa
sabre, trans r1_illness r1 * illness
sabre, trans r1_actdays r1 * actdays
sabre, trans r1_hscore r1 * hscore
sabre, trans r1_chcond1 r1 * chcond1
sabre, trans r1_chcond2 r1 * chcond2
sabre, trans r2_sex r2 * sex
sabre, trans r2_age r2 * age
sabre, trans r2_agesq r2 * agesq
sabre, trans r2_income r2 * income
sabre, trans r2_levyplus r2 * levyplus
sabre, trans r2_freepoor r2 * freepoor
sabre, trans r2_freerepa r2 * freerepa
sabre, trans r2_illness r2 * illness
sabre, trans r2_actdays r2 * actdays
sabre, trans r2_hscore r2 * hscore
sabre, trans r2_chcond1 r2 * chcond1
sabre, trans r2_chcond2 r2 * chcond2
sabre, nvar 13
#delimit ;
sabre, lfit r1_sex r1_age r1_agesq r1_income r1_levyplus r1_freepoor

r1_freerepa r1_illness r1_actdays r1_hscore r1_chcond1 r1_chcond2
r1
r2_sex r2_age r2_agesq r2_income r2_levyplus r2_freepoor
r2_freerepa r2_illness r2_actdays r2_hscore r2_chcond1 r2_chcond2
r2;

#delimit cr
sabre, dis m
sabre, dis e
sabre, nvar 13
#delimit ;
sabre, fit r1_sex r1_age r1_agesq r1_income r1_levyplus r1_freepoor

r1_freerepa r1_illness r1_actdays r1_hscore r1_chcond1 r1_chcond2
r1
r2_sex r2_age r2_agesq r2_income r2_levyplus r2_freepoor
r2_freerepa r2_illness r2_actdays r2_hscore r2_chcond1 r2_chcond2
r2;

#delimit cr
sabre, dis m
sabre, dis e
log close
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clear
exit

8.3.5 Sabre log file

Standard Poisson/Poisson

Number of observations = 10380

X-var df = 26

Log likelihood = -8886.3083 on 10354 residual degrees of freedom

Parameter Estimate Std. Err.
____________________________________________________
(intercept).1 -2.2238 0.18982
sex.1 0.15688 0.56137E-01
age.1 1.0563 1.0008
agesq.1 -0.84870 1.0778
income.1 -0.20532 0.88379E-01
levyplus.1 0.12319 0.71640E-01
freepoor.1 -0.44006 0.17981
freerepa.1 0.79798E-01 0.92060E-01
illness.1 0.18695 0.18281E-01
actdays.1 0.12685 0.50340E-02
hscore.1 0.30081E-01 0.10099E-01
chcond1.1 0.11409 0.66640E-01
chcond2.1 0.14116 0.83145E-01
(intercept).2 -2.7412 0.12921
sex.2 0.48377 0.36639E-01
age.2 2.6497 0.61491
agesq.2 -0.88778 0.64292
income.2 -0.44661E-02 0.55766E-01
levyplus.2 0.28274 0.52278E-01
freepoor.2 -0.45680E-01 0.12414
freerepa.2 0.29584 0.59667E-01
illness.2 0.20112 0.10530E-01
actdays.2 0.29261E-01 0.36746E-02
hscore.2 0.20103E-01 0.63664E-02
chcond1.2 0.77565 0.46130E-01
chcond2.2 1.0107 0.53895E-01

(Random Effects Model)

Correlated bivariate model

Standard Poisson/Poisson
Gaussian random effects

Number of observations = 10380
Number of cases = 5190

X-var df = 26
Scale df = 3
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Log likelihood = -8551.2209 on 10351 residual degrees of freedom

Parameter Estimate Std. Err.
____________________________________________________
(intercept).1 -2.6694 0.24673
sex.1 0.27506 0.73571E-01
age.1 -0.96132 1.3337
agesq.1 1.4568 1.4522
income.1 -0.11897 0.11257
levyplus.1 0.15202 0.89966E-01
freepoor.1 -0.62151 0.23768
freerepa.1 0.17419 0.12109
illness.1 0.22347 0.25097E-01
actdays.1 0.13872 0.81816E-02
hscore.1 0.39132E-01 0.14129E-01
chcond1.1 0.15663 0.83179E-01
chcond2.1 0.26404 0.10820
(intercept).2 -2.9069 0.15064
sex.2 0.57019 0.43558E-01
age.2 2.0381 0.74431
agesq.2 -0.19637 0.79300
income.2 0.32556E-01 0.65766E-01
levyplus.2 0.27330 0.58470E-01
freepoor.2 -0.91061E-01 0.13849
freerepa.2 0.29736 0.69972E-01
illness.2 0.21674 0.13479E-01
actdays.2 0.40222E-01 0.50644E-02
hscore.2 0.21171E-01 0.81907E-02
chcond1.2 0.77259 0.51285E-01
chcond2.2 1.0204 0.63007E-01
scale1 0.99674 0.43107E-01
scale2 0.56067 0.26891E-01
corr 0.83217 0.52117E-01

8.3.6 Discussion

These results show that there is significant overdispersion in both the responses,
dvisits with scale1 0.99674 (s.e. 0.043107) and prescribwith scale2 0.56067
(s.e. 0.026891), and that these responses are correlated with corr 0.83217 (s.e.
0.052117). As expected the standard errors of the estimates of the covariates
effects are generally larger in the bivariate GLMM that they are in the homo-
geneous GLMs.
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This shows the different level of overdispersion in the different responses and a
large correlation between the random intercepts. If we had not been interested
in obtaining the correlation between the responses we could have done a separate
analysis of each response and made adjustments to the SEs. This is legitimate
here as there are no simultaneous direct effects (e.g. dvisits on precrib) in
this model

Sabre can model up to 3 different panel responses simultaneously.
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8.4 Example L9. Bivariate Linear and Probit
Model: Wage and Trade Union Membership

We now illustrate a bivariate multilevel GLM with different link functions. The
data we use are versiona (nls.dta and nlswage-union.dta) of the National
Longitudinal Study of Youth (NLSY) data as used in various Stata Manuals (to
illustrate the xt commands). The data are for young women who were aged 14-
26 in 1968. The women were surveyed each year from 1970 to 1988, except for
1974, 1976, 1979, 1981, 1984 and 1986. We have removed records with missing
values on one or more of the response and explanatory variables we want to use
in our analysis of the joint determinants of wages and trade union membership.
There are 4132 women (idcode) with between 1 and 12 years of observation
being in waged employment (i.e. not in full-time education) and earning more
than $1/hour but less than $700/hour.
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The above Figure shows the dependence between trade union membership (yuij)
and wages (ywij). There are no multilevel random effects affecting either wages or
trade union membership. The binary response variable trade union membership,
yuij = 1, 0, is based on the latent variable y

∗u
ij . This model can be estimated by

any software that estimates basic GLMs.
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The above Figure now also shows the dependence between trade union mem-
bership and wages. This time there are multilevel random effects affecting both
wages and trade union membership. However the multilevel random effects uuij
and uwij are independent, with variances σ

2
u and σ2w respectively. This model

can be estimated by any software that estimates multilevel GLMs by treating
the wage and trade union models as independent.



8. Multivariate Two-Level Generalised Linear Mixed Models 85

y*u
ij

yw
ij

yu
ij

εw
ij

εu
ij

uw
0j

uu
0j y*u

ij

yw
ij

yu
ij

εw
ij

εu
ij

uw
0j

uu
0j

This Figure also shows the dependence between trade union membership and
wages, this time there is a correlation ρuw between the multilevel random effects
affecting trade union membership and wages, uuij and uwij respectively. This is
shown by the curved line linking them together. This model can be estimated by
Sabre 5.0 as a bivariate multilevel GLM by allowing for a correlation between
the trade union membership wage and wage responses at each wave i of the
panel.

How do the results change as the model becomes more comprehensive, especially
with regard to the direct effect of trade union membership on wages?

8.4.1 References

Stata Longitudinal/Panel Data, Reference Manual, Release 9, (2005), Stata
Press, StataCorp LP, College Station, Texas.

8.4.2 Data description for nls.dta

Number of observations: 18995
Number of level-2 cases: 4132

8.4.3 Variables

ln_wage: ln(wage/GNP deflator) in a particular year
black: 1 if woman is black, 0 otherwise
msp: 1 if woman is married and spouse is present, 0 otherwise
grade: years of schooling completed (0-18)
not_smsa: 1 if woman was living outside a standard metropolitan statistical
area (smsa), 0 otherwise
south: 1 if woman was living in the South, 0 otherwise
union: 1 if woman was a member of a trade union, 0 otherwise
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tenure: job tenure in years (0-26)
age: respondent’s age
age2 : age* age

We will show the differences between a bivariate model and allowing for the cor-
relation between the response sequences. The data displayed below (nls.dta),
is used for to estimate the separate models for lnwage and union.

idcode year birth_yr age race msp nev_mar grade collgrad not_smsa c_city south union ttl_exp tenure ln_wage black age2 ttl_exp2 tenure2
1 72 51 20 2 1 0 12 0 0 1 0 1 2.26 0.92 1.59 1 400 5.09 0.84
1 77 51 25 2 0 0 12 0 0 1 0 0 3.78 1.50 1.78 1 625 14.26 2.25
1 80 51 28 2 0 0 12 0 0 1 0 1 5.29 1.83 2.55 1 784 28.04 3.36
1 83 51 31 2 0 0 12 0 0 1 0 1 5.29 0.67 2.42 1 961 28.04 0.44
1 85 51 33 2 0 0 12 0 0 1 0 1 7.16 1.92 2.61 1 1089 51.27 3.67
1 87 51 35 2 0 0 12 0 0 0 0 1 8.99 3.92 2.54 1 1225 80.77 15.34
1 88 51 37 2 0 0 12 0 0 0 0 1 10.33 5.33 2.46 1 1369 106.78 28.44
2 71 51 19 2 1 0 12 0 0 1 0 0 0.71 0.25 1.36 1 361 0.51 0.06
2 77 51 25 2 1 0 12 0 0 1 0 1 3.21 2.67 1.73 1 625 10.31 7.11
2 78 51 26 2 1 0 12 0 0 1 0 1 4.21 3.67 1.69 1 676 17.74 13.44
2 80 51 28 2 1 0 12 0 0 1 0 1 6.10 5.58 1.73 1 784 37.16 31.17
2 82 51 30 2 1 0 12 0 0 1 0 1 7.67 7.67 1.81 1 900 58.78 58.78
2 83 51 31 2 1 0 12 0 0 1 0 1 8.58 8.58 1.86 1 961 73.67 73.67
2 85 51 33 2 0 0 12 0 0 1 0 1 10.18 1.83 1.79 1 1089 103.62 3.36
2 87 51 35 2 0 0 12 0 0 1 0 1 12.18 3.75 1.85 1 1225 148.34 14.06
2 88 51 37 2 0 0 12 0 0 1 0 1 13.62 5.25 1.86 1 1369 185.55 27.56
3 71 45 25 2 0 1 12 0 0 1 0 0 3.44 1.42 1.55 1 625 11.85 2.01
3 72 45 26 2 0 1 12 0 0 1 0 0 4.44 2.42 1.61 1 676 19.73 5.84
3 73 45 27 2 0 1 12 0 0 1 0 0 5.38 3.33 1.60 1 729 28.99 11.11
3 77 45 31 2 0 1 12 0 0 1 0 0 6.94 2.42 1.62 1 961 48.20 5.84

First few lines of nls.dta

We take ln_wage (linear model) and union (probit link) to be the response
variables and model them with a random intercept and a range of explanatory
variables.

Besides allowing for the overdispersion in ln_wage and union, and correla-
tion between them, the ln_wage equation contains union as an explanatory
variable. We start by estimating separate 2 level models on the sequences of
ln_wage and union from the nls.dta, we then use the extended version of
the data (nlswage-union.dta) needed for the bivariate model. The extended
version nlswage-union.dta contains the extra variables r1 and r2 needed to
distinguish the 1st response (lnwage) from the second (union) in the bivariate
model.
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8.4.4 Sabre commands

log using nlswage-union_s.log, replace
set mem 100m
set more off
use nls
#delimit ;
sabre, data idcode year birth_yr age race msp nev_mar grade collgrad not_smsa

c_city south union ttl_exp tenure ln_wage black age2 ttl_exp2 tenure2;
sabre idcode year birth_yr age race msp nev_mar grade collgrad not_smsa c_city

south union ttl_exp tenure ln_wage black age2 ttl_exp2 tenure2, read;
#delimit cr
sabre, case idcode
sabre, yvar ln_wage
sabre, family g
sabre, constant cons
sabre, lfit black msp grade not_smsa south union tenure cons
sabre, dis m
sabre, dis e
sabre, fit black msp grade not_smsa south union tenure cons
sabre, dis m
sabre, dis e
sabre, yvar union
sabre, family b
sabre, link p
sabre, lfit age age2 black msp grade not_smsa south cons
sabre, dis m
sabre, dis e
sabre, fit age age2 black msp grade not_smsa south cons
sabre, dis m
sabre, dis e
clear
use nlswage-union
#delimit ;
sabre, data ij r idcode year birth_yr age race msp nev_mar grade collgrad

not_smsa c_city south union ttl_exp tenure ln_wage black age2 ttl_exp2
tenure2 y r1 r2;

sabre ij r idcode year birth_yr age race msp nev_mar grade collgrad not_smsa
c_city south union ttl_exp tenure ln_wage black age2 ttl_exp2 tenure2 y
r1 r2, read;

#delimit cr
sabre, case idcode
sabre, yvar y
sabre, model b
sabre, rvar r
sabre, family first=g
sabre, link second=p
sabre, constant first=r1 second=r2
sabre, trans r1_black r1 * black
sabre, trans r1_msp r1 * msp
sabre, trans r1_grade r1 * grade
sabre, trans r1_not_smsa r1 * not_smsa
sabre, trans r1_south r1 * south
sabre, trans r1_union r1 * union
sabre, trans r1_tenure r1 * tenure
sabre, trans r2_age r2 * age
sabre, trans r2_age2 r2 * age2
sabre, trans r2_black r2 * black
sabre, trans r2_msp r2 * msp
sabre, trans r2_grade r2 * grade
sabre, trans r2_not_smsa r2 * not_smsa
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sabre, trans r2_south r2 * south
sabre, nvar 8
#delimit ;
sabre, lfit r1_black r1_msp r1_grade r1_not_smsa r1_south r1_union r1_tenure

r1
r2_age r2_age2 r2_black r2_msp r2_grade r2_not_smsa r2_south r2;

#delimit cr
sabre, dis m
sabre, dis e
sabre, nvar 8
#delimit ;
sabre, fit r1_black r1_msp r1_grade r1_not_smsa r1_south r1_union r1_tenure r1

r2_age r2_age2 r2_black r2_msp r2_grade r2_not_smsa r2_south r2;
#delimit cr
sabre, dis m
sabre, dis e
log close
clear
exit

8.4.5 Sabre log file

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) 0.82027 0.16614E-01
black -0.10093 0.66150E-02
msp 0.50526E-03 0.57363E-02
grade 0.69701E-01 0.11861E-02
not_smsa -0.18494 0.62495E-02
south -0.80056E-01 0.59837E-02
tunion 0.13725 0.66379E-02
tenure 0.32222E-01 0.67368E-03
sigma 0.37523

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) 0.75217 0.26994E-01
black -0.70564E-01 0.12656E-01
msp -0.12989E-02 0.59885E-02
grade 0.72967E-01 0.19959E-02
not_smsa -0.14528 0.88414E-02
south -0.73888E-01 0.89322E-02
tunion 0.11024 0.65211E-02
tenure 0.28481E-01 0.64979E-03
sigma 0.26176 0.15024E-02
scale 0.27339 0.35702E-02
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Univariate model
Standard linear
Gaussian random effects

Number of observations = 18995
Number of cases = 4132

X-var df = 8
Sigma df = 1
Scale df = 1

Log likelihood = -4892.5205 on 18985 residual degrees of freedom

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -1.3430 0.23760
age 0.12788E-01 0.15521E-01
age2 -0.10605E-03 0.24659E-03
black 0.48206 0.24334E-01
msp -0.20820E-01 0.21552E-01
grade 0.31364E-01 0.44733E-02
not_smsa -0.75475E-01 0.24045E-01
south -0.49752 0.23085E-01

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -2.5916 0.38587
age 0.22417E-01 0.23566E-01
age2 -0.22314E-03 0.37641E-03
black 0.82324 0.68871E-01
msp -0.71011E-01 0.40905E-01
grade 0.69085E-01 0.12453E-01
not_smsa -0.13402 0.59397E-01
south -0.75488 0.58043E-01
scale 1.4571 0.35516E-01

Univariate model
Standard probit
Gaussian random effects

Number of observations = 18995
Number of cases = 4132

X-var df = 8
Scale df = 1

Log likelihood = -7647.0998 on 18986 residual degrees of freedom
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(Standard Homogenous Model)

Parameter Estimate Std. Err.
____________________________________________________
(intercept).1 0.82027 0.16614E-01
black.1 -0.10093 0.66150E-02
msp.1 0.50526E-03 0.57363E-02
grade.1 0.69701E-01 0.11861E-02
not_smsa.1 -0.18494 0.62495E-02
south.1 -0.80056E-01 0.59837E-02
tunion.1 0.13725 0.66379E-02
tenure.1 0.32222E-01 0.67368E-03
(intercept).2 -1.3430 0.23760
black.2 0.48206 0.24334E-01
msp.2 -0.20822E-01 0.21552E-01
grade.2 0.31363E-01 0.44733E-02
not_smsa.2 -0.75475E-01 0.24045E-01
south.2 -0.49752 0.23085E-01
age.2 0.12788E-01 0.15521E-01
age2.2 -0.10605E-03 0.24659E-03
sigma1 0.37523

(Random Effects Model)

Parameter Estimate Std. Err.
____________________________________________________
(intercept).1 0.75162 0.26753E-01
black.1 -0.69805E-01 0.12511E-01
msp.1 -0.14237E-02 0.59871E-02
grade.1 0.73275E-01 0.19736E-02
not_smsa.1 -0.14524 0.88679E-02
south.1 -0.74533E-01 0.89063E-02
tunion.1 0.96328E-01 0.70837E-02
tenure.1 0.28328E-01 0.65261E-03
(intercept).2 -2.5481 0.38382
black.2 0.84621 0.69172E-01
msp.2 -0.64955E-01 0.41090E-01
grade.2 0.64562E-01 0.12164E-01
not_smsa.2 -0.10254 0.58471E-01
south.2 -0.73260 0.56972E-01
age.2 0.20406E-01 0.23558E-01
age2.2 -0.18467E-03 0.37617E-03
sigma1 0.26170 0.15009E-02
scale1 0.27466 0.36213E-02
scale2 1.4765 0.37284E-01
corr 0.11927 0.24144E-01

Correlated bivariate model

Standard linear/probit
Gaussian random effects

Number of observations = 37990
Number of cases = 4132

X-var df = 16
Sigma df = 1
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Scale df = 3

Log likelihood = -12529.120 on 37970 residual degrees of freedom

8.4.6 Discussion

These last results show the different level of overdispersion in the different re-
sponses and a positive correlation between the random intercepts.

The effect of trade union membership in the wage equation changes from 0.11024
(in the model which does allow for the overdispersion of the different responses
but not the correlation between them) to 0.09632 which suggests that the effect
of the trade union membership on log wages is endogenous.
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For further discussion on MGLMMs, see Wooldridge (2002).

8.5 Exercises

There are two MGLMM exercises to accompany this section, namely L9 (bivari-
ate Poisson model) and L10 (joint linear and binary response model).

8.6 References

Wooldridge, J. M. (2002), Econometric Analysis of Cross Section and Panel
Data, MIT Press, Cambridge Mass.



Chapter 9

Event History Models

9.1 Introduction

An important type of discrete data occurs with the modelling of the duration to
some pre-specified event such as the duration in unemployment from the start of
a spell of unemployment until the start of work, the time between shopping trips,
or the time to first marriage. This type of discrete data has several important
features. For instance, the duration or times to the events of interest are often
not observed for all the sampled subjects or individuals. This often happens
because the event of interest had not happened by the end of the observation
window; when this happens we say that the spell was right censored. This
feature is represented in This feature is represented in Figure 9.1.

The Case 4 event has not happened during the period of observation.

The second important feature of social science duration data is that the temporal
scale of most social processes is so large (months/years) that it is inappropriate

 
Case 1: |-------------------------------------------x (event) 
 
 
Case 2: |--------------------------------x (event) 
 
 
Case 3: |----------------------------------------x (event) 
 
 
Case 4: |---------------------------------------------------|-  -  -? 
              time 
 

Figure 9.1: Duration Data Schematic
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to assume that the explanatory variables remain constant, e.g. in an unem-
ployment spell, the local labour market unemployment rate will vary (at the
monthly level) as the local and national economic conditions change. Other
explanatory variables like the subject’s age change automatically with time.

The third important feature of social science duration data occurs when the
observation window cuts into an ongoing spell; this is called left censoring. We
will assume throughout that left censoring is non-informative for event history
models.

The fourth important feature of duration data is that the spells can be of dif-
ferent types, e.g. the duration of a household in rented accomodation until
they move to another rented property could have different characteristics to the
duration of a household in rented accommodation until they become owner oc-
cupiers. This type of data can be modelled using competing risk models. The
theory of competing risks (CR) provides a structure for inference in problems
where subjects are exposed to several types of failure. CR models are used in
many fields, e.g. in the preparation of life tables for biological populations and
in the reliability and safety of engineering systems.

There is a big literature on duration modelling, or what is called survival mod-
elling in medicine. In social science duration data we typically observe a spell
over a sequence of intervals, e.g. weeks or months, so we are going to focus on
the discrete-time methods. We are not reducing our modelling options by doing
this, as durations measured at finer intervals of time such as days, hours, or
even seconds can also be written out as a sequence of intervals. We can also
group the data by using larger intervals (such as weeks or months) than those
at which the durations are measured.

Event history data occur when we observe repeated duration events. If these
events are of the same type, e.g. birth intervals, we have a renewal model.
When the events can be of different types, e.g. full-time work, part-time work
and out of the labour market we have a semi-Markov process. We start by
considering a 2-level model for single events (duration model), and then extend
this to repeated events of the same kind. We then discuss 3-level models for
duration data and end with the multivariate competing risk model.

Various identifiability issues arise in multilevel duration models because of the
internal nature of the duration effects on the linear predictor. Identifiability was
first discussed for 2-level continuous time models by Elbers and Ridder (1982),
and later by Heckman and Singer (1984a, 1984b). These authors show that co-
variates are needed to identify most 2-level duration models, when the random
effect distribution (mixing distribution) has a finite mean (like the Gaussian dis-
tribution), the main exception is the Weibull model, which is identified without
covariates. These results go through into discrete time models. The identifi-
ability of competing risk models is similar, see Heckman and Honore (1988).
Random effect distributions with infinite mean are not covered in this book, for
discussion on these see Hougaard (1986a, 1986b).
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9.2 Duration Models

Suppose we have a binary indicator yij for individual j, which takes the value
1 if the spell ends in a particular interval i and 0 otherwise. Then individual
j’s duration can be viewed as a series of events over consecutive time periods
(i = 1, 2, ..., Tj) which can be represented by a binary sequence:

yj =
£
y1j ,y2j , ...,yTjj

¤
.

If we only observe a single spell for each subject this would be a sequence of 0s,
which would end with a 1 if the spell is complete and 0, if it is right censored. We
can use the multilevel binary response model notation so that the probability
that yij = 1 for individual j at interval i, given that yi0j = 0,∀i0 < i is given by

Pr (yij = 1 | θij) = 1− F (θij)

= μij .

But instead of using the logit or probit link, we use the complementary log log
link, which gives

μij = 1− exp[− exp (θij)].
This model was derived by Prentice and Gloeckler (1978). The linear predictor
takes the form

θij = β0j +
X
p

βpjxpij + ki,

where the ki are interval-specific constants, the xpij are explanatory variables
describing individual and contextual characteristics as before. In survival mod-
elling language the ki are given by

ki = log {Λ0 (ti)− Λ0 (ti−1)} ,

where the Λ0 (ti−1) and Λ0 (ti) are respectively, the values of the integrated
baseline hazard at the start and end of the ith interval.

To help clarify the notation, we give an example of what the data structure
would look like for three spells (without covariates). Suppose we had the data:

Subject identifier Duration Censored
j Tj (1=No, 0=Yes)
1 4 1
2 3 0
3 1 1

Duration data structure

so that e.g. subject 2 has a spell of length 3, which is right censored. Then the
data structure we need to model the duration data in discrete time is given in
the Table below
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Subject Interval Response Interval-specific constants
Identifier j i yij k1 k2 k3 k4

1 1 0 1 0 0 0
1 2 0 0 1 0 0
1 3 0 0 0 1 0
1 4 1 0 0 0 1
2 1 0 1 0 0 0
2 2 0 0 1 0 0
2 3 0 0 0 1 0
3 1 1 1 0 0 0

Duration data structure, modified

To identify the model we need to fix the constant at zero or remove one of the
ki. We often fix the constant at zero.

The likelihood of a subject that is right censored at the end of the Tjth interval
is

TjY
i=1

(1− μij) =

TjY
i=1

μ
yij
ij (1− μij)

1−yij ,

where yTjj = 0, while that of a subject whose spell ends without a censoring in
the Tjth interval is

μiTj

Tj−1Y
i=1

(1− μij) =

TjY
i=1

μ
yij
ij (1− μij)

1−yij ,

as yTjj = 1.

9.3 Two-level Duration Models

Because the same subject is involved at different intervals we would expect the
binary responses yij and yi0j , i 6= i0, to be more similar than the responses yij
and yij0 , j 6= j0. We allow for this similarity with random effects. To allow for
the random intercept in the linear predictor

θij = β0j +
X
p

βpjxpij + ki,

we can use multi-level substitutions, with the constraint γ00 = 0, so that

β0j =

QX
q=1

γ0qzpj + u0j , βpj = γp0,

The general model then becomes

θij =
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + ki + u0j ,



9. Event History Models 97

and the likelihood becomes

L
¡
γ, k, φ, σ2u0 |y,x, z

¢
=
Y
j

+∞Z
−∞

Y
i

g (yij | θij , φ) f (u0j) du0j,

with complementary log log link c and binomial error b so that φ = 1, μij =
1− exp (− exp θij) and

g (yij |xij , zj , u0j) = μ
yij
ij (1− μij)

1−yij .

Also

f (u0j) =
1√
2πσu0

exp

Ã
−

u20j
2σ2u0

!
.

Sabre evaluates the integral L
¡
γ, k, φ, σ2u0 |y,x, z

¢
for this binary response model

using numerical quadrature (integration).

9.4 Renewal models

When a subject experiences repeated events of the same type in an observation
window we can supply a renewal model. A diagrammatic representation of such
data is given by Figure 9.2

|––––––––x–––––––––––-x–––––—| censored
|–––––––––––––––x––––| censored
|–––––x––––––––––––––––––––—| censored
|–––––––––––––—x––––––––––––| censored
|––––––––––––––––––––––—x–––| censored
|––––––––––––––––––x––x–––––| censored
|––––––––––––––––––––––––––| censored
|–––––––––––––––––| censored

Figure 9.2: Renewal Model Schematic

In the Figure above the subjects that are still present at the end of the observa-
tion window have their last event right censored. Two subjects leave the survey
before the end of the observation window. Two subjects experience two events
each before censoring. Four subjects have one event occurring before they are
censored. Two subjects do not experience any events before censoring.

To help clarify the notation, we give an example of what the data structure
would look like for 3 subjects observed over 4 intervals (without covariates).
Suppose we had
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Subject identifier Duration Censored
j Tj (1=No, 0=Yes)
1 2 1
1 2 0
2 1 1
2 3 0
3 4 0

Renewal data structure

Subject 1 experiences an event after two intervals, followed by two intervals
without an event. Subject 2 has an event occurring at the end of interval 1, and
is then right censored by the end of interval 4. Subject 3 progresses through all
four intervals without experiencing any events.

We now use duration constants (instead of interval constants) to define the
duration that occurs in the ith interval. Then the data structure, we need to
model the duration data using a binary response GLM , is given by

Subject Interval Duration Response Duration-specific constants
Identifier j i d yij k1 k2 k3 k4

1 1 1 0 1 0 0 0
1 2 2 1 0 1 0 0
1 3 1 0 1 0 0 0
1 4 2 0 0 0 0 0
2 1 1 1 1 0 0 0
2 2 1 0 1 0 0 0
2 3 2 0 0 0 0 0
2 4 3 0 0 0 1 0
3 1 1 0 1 0 0 0
3 2 2 0 0 1 0 0
3 3 3 0 0 0 1 0
3 4 4 0 0 0 0 1

Renewal data structure, modified

We form the likelihood for the renewal model with the product of μyijij (1− μij)
1−yij

over the complete sequence. The yij deal with the occurrence/non-occurrence
of the event and the kd deal with the duration of the spell in the ith interval.
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9.5 Example L7. Renewal Model of Residential
Mobility

In 1986, the ESRC funded the Social Change and Economic Life Initiative
(SCELI). Under this initiative work and life histories were collected for a sam-
ple of individuals from 6 different geographical areas in the UK. One of these
locations was Rochdale. The data set roch.dta contains annual data on male
respondents’ residential behaviour since entering the labour market. These are
residence histories on 348 Rochdale men aged 20 to 60 at the time of the survey.
We are going to use these data in the study of the determinants of residential
mobility.

9.5.1 Data description for roch.dta

Number of observations (rows): 6349
Number of level-2 cases: 348

9.5.2 Variables

case: respondent number
move: 1 if a residential move occurs during the current year, 0 otherwise
dur: number of years since last move
mbu: 1 if marriage break-up during the year, 0 otherwise
fm: 1 if first marriage during the year, 0 otherwise
mar: 1 if married at the beginning of the year, 0 otherwise
emp: employment at the beginning of the year (1=self employed; 2=employee;
3=not working)
age: (age-30) years
emp2: 1 if employment at the beginning of the year is employee; 0 otherwise
emp3: 1 if employment at the beginning of the year is not working; 0 otherwise

Note that the variable dur, which measures the number of years since the last
move is endogenous, i.e. it is internally related to the process of interest.
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 ca se m ove dur m bu fm m a r e m p a ge e m p2 e m p3
50004 1 1 0 0 0 2 -13 1 0
50004 0 1 0 0 0 2 -12 1 0
50004 0 2 0 0 0 2 -11 1 0
50004 1 3 0 0 0 2 -10 1 0
50004 0 1 0 0 0 2 -9 1 0
50004 0 2 0 0 0 2 -8 1 0
50004 0 3 0 1 0 3 -7 0 1
50008 0 1 0 0 0 2 -12 1 0
50008 0 2 0 0 0 3 -11 0 1
50008 0 3 0 0 0 3 -10 0 1
50011 0 1 0 0 0 2 -14 1 0
50011 0 2 0 0 0 2 -13 1 0
50011 0 3 0 0 0 2 -12 1 0
50011 0 4 0 0 0 2 -11 1 0
50011 0 5 0 0 0 2 -10 1 0
50011 0 6 0 0 0 2 -9 1 0
50011 0 7 0 0 0 2 -8 1 0
50011 0 8 0 0 0 2 -7 1 0
50011 0 9 0 0 0 2 -6 1 0
50011 0 10 0 0 0 2 -5 1 0
50011 0 11 0 0 0 2 -4 1 0
50011 0 12 0 0 0 2 -3 1 0
50011 0 13 0 0 0 2 -2 1 0
50011 0 14 0 0 0 2 -1 1 0

First few lines of roch.dta

We will create quadratic (age2) and cubic (age3) terms in age to allow more
flexibility in modelling this variable (i.e. to allow for a non-linear relationship).

We will then specify the binary response variable (move) and fit a cloglog model
to the explanatory variables age dur fm mbu mar emp2 emp3. Add the age2 and
age3 effects to this model.

9.5.3 Sabre commands

log using roch_s.log, replace
set more off
use roch
sabre, data case move dur mbu fm mar emp age emp2 emp3
sabre case move dur mbu fm mar emp age emp2 emp3, read
sabre, case case
sabre, yvar move
sabre, link c
sabre, constant cons
sabre, trans age2 age * age
sabre, trans age3 age2 * age
sabre, lfit age dur fm mbu mar emp2 emp3 cons
sabre, dis m
sabre, dis e
sabre, fit age dur fm mbu mar emp2 emp3 cons
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sabre, dis m
sabre, dis e
sabre, lfit age dur fm mbu mar emp2 emp3 age2 age3 cons
sabre, dis m
sabre, dis e
sabre, fit age dur fm mbu mar emp2 emp3 age2 age3 cons
sabre, dis m
sabre, dis e
log close
clear
exit

9.5.4 Sabre log file

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -1.4432 0.30719
age 0.40490E-01 0.99268E-02
dur -0.19104 0.16430E-01
fm 0.66532 0.20423
mbu 1.1337 0.60895
mar -0.36649 0.15837
emp2 -0.57736E-01 0.28758
emp3 0.64292E-01 0.34236

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -2.4485 0.38744
age 0.20791E-02 0.13319E-01
dur -0.11510 0.20926E-01
fm 0.59640 0.21071
mbu 1.2865 0.60746
mar -0.52053 0.17935
emp2 -0.15696 0.32218
emp3 -0.22194E-01 0.37914
scale 0.95701 0.12322

Univariate model
Standard complementary log-log
Gaussian random effects

Number of observations = 6349
Number of cases = 348

X-var df = 8
Scale df = 1
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Log likelihood = -1092.8370 on 6340 residual degrees of freedom

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -1.1106 0.31902
age 0.49791E-02 0.18385E-01
dur -0.20439 0.17274E-01
fm 0.44789 0.20923
mbu 1.0605 0.61012
mar -0.51916 0.15734
emp2 -0.41978E-01 0.28697
emp3 0.85658E-01 0.34396
age2 -0.36339E-02 0.94966E-03
age3 0.21321E-03 0.89144E-04

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -2.2152 0.40755
age -0.41466E-01 0.20697E-01
dur -0.11896 0.22185E-01
fm 0.37503 0.21795
mbu 1.2371 0.60712
mar -0.65709 0.18325
emp2 -0.17667 0.32416
emp3 -0.64809E-01 0.38327
age2 -0.27919E-02 0.97393E-03
age3 0.25579E-03 0.88150E-04
scale 0.95151 0.12350

Univariate model
Standard complementary log-log
Gaussian random effects

Number of observations = 6349
Number of cases = 348

X-var df = 10
Scale df = 1

Log likelihood = -1085.6462 on 6338 residual degrees of freedom

9.5.5 Discussion

The addition of variables age2 {coefficient -0.0027919 (s.e. 0.00097393)} and
age3 {coefficient 0.00025579 (s.e. 0.000088150)} to the model has significantly
reduced the log likelihood. Age clearly has a complicated realtionship with
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the probability of moving. The duration effect dur has coeffcient -0.11896 (s.e.
0.022185), which suggests that the respondent is less likely to move the longer
they stay in their current home. The level-2 random effect is very significant, it
has the parameter scale and takes the value 0.95151 (s.e. 0.12350).
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9.5.6 Exercise

Exercise L11 is a renewal model exercise on repeated times to angina pectoris.

9.6 Three-level Duration Models

We can also apply 3-level event history models to duration data. The binary
response variable, which now needs to acknowledge the extra level, is denoted
by yijk, e.g. referring to the modelling of firm vacancies, where yijk = 1 if the
vacancy is filled in interval i of vacancy j of firm k and yijk = 0 otherwise.
We would expect that the duration of vacancies of a particular firm to be more
similar than the duration of vacancies of different firms. We would also expect
that the binary responses yijk and yi0jk to be more similar than those of different
j.

9.6.1 Exercises

The Exercise 3LC5 is a 3 level vacancy duration model with 1736 vacancies in
515 firms.

9.7 Competing Risk Models

The theory of competing risks (CR) provides a structure for inference in prob-
lems where subjects are exposed to several types of event. We earlier gave the
example of a household in rented accommodation, moving to different rented
accommodation or becoming an owner occupier (2 possible types of ending).
An example in the labour market context is given by a spell of unemployment
ending in employment in a skilled, semi-skilled or unskilled occupation (3 pos-
sible types of ending). Because the same subjects are exposed to the possibility
of different types of events occurring, we would expect that in addition to the
probability of a particular event occurring at a given interval being correlated
with the probability of that event occurring at another interval, the probability
of the different events occurring are also correlated.

The Figure 9.3 shows failure/death due to two failure mechanisms A and B.
Three observations are terminated by events of type A. Events of type B occur
for three further subjects. Two observations are censored.
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|–––––––––––––––––––-x A
|–––––––––––––––x B
|––––––––––––––––––––––––—| censored
|–––––––––––––—x A
|––––––––––––––––––––––—x B
|––––––––––––––––––xB
|–––––––––––––––––––––––-xA
|–––––––––––––––––| censored

Figure 9.3: Failure/Death Due To Two Failure Mechanisms Schematic

|–––––––––––––––––––-x A
|–––––––––––––––|censored
|––––––––––––––––––––––––—| censored
|–––––––––––––—x A
|––––––––––––––––––––––—| censored
|––––––––––––––––––|censored
|–––––––––––––––––––––––-xA
|–––––––––––––––––| censored

Figure 9.4: Data for the model for failure due to mechanism A

To model failure type A.Define an event as a time when a failure of type A
occurs, and treat all other observations as censored, ie. if a failure of type B
occurs at time t1, this is regarded as a censoring at time t1 as far as process A
is concerned, as a failure of type A has not yet occurred by time t1.

Analyse replications of the data for each failure type.

In Table 9.1 we present some sample competing risk data of the times to two
events (A & B) for 3 subjects. Subject 1 has an event of type A occurring by
the end of interval 2. Subject 2 is censored at the end of interval 2 without an
event occurring. Subject 3 experiences an event of type B by the end of interval
4.

|–––––––––––––––––––-|censored
|–––––––––––––––x B
|––––––––––––––––––––––––—| censored
|–––––––––––––—|censored
|––––––––––––––––––––––—x B
|––––––––––––––––––xB
|–––––––––––––––––––––––-|censored
|–––––––––––––––––| censored

Figure 9.5: Data for the model for failure due to mechanism B
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Subject identifier Duration Event Censored
j Tj (1=A,2=B) (1=No, 0=Yes)
1 2 1 1
1 2 2 0
2 1 1 0
2 1 2 0
3 4 1 0
3 4 2 1

Table 9.1: Competing risk data structure

Subject Interval Duration Response Event Duration-specific constants
Identifier j i d yij 1=A,2=B k1 k2 k3 k4

1 1 1 0 1 1 0 0 0
1 2 2 1 1 0 1 0 0
1 1 1 0 2 1 0 0 0
1 2 2 0 2 0 1 0 0
2 1 1 0 1 1 0 0 0
2 1 1 0 2 1 0 0 0
3 1 1 0 1 1 0 0 0
3 2 2 0 1 0 1 0 0
3 3 3 0 1 0 0 1 0
3 4 4 0 1 0 0 0 1
3 1 1 0 2 1 0 0 0
3 2 2 0 2 0 1 0 0
3 3 3 0 2 0 0 1 0
3 4 4 1 2 0 0 0 1

Table 9.2: Competing risk data structure, modified
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9.8 Likelihood

L (γ,k, φ,Σu0 |y,x, z) =
Y
j

∞Z
· · ·
Z

−∞

Y
i

Y
r

gr
¡
yrij | θrij , φr

¢
f (u0j) du0j ,

with cloglog link c and binomial error b so that φr = 1, μrij = 1−exp
¡
− exp θrij

¢
,

gr
¡
yrij |θrij , φr

¢
=
¡
μrij
¢yrij ¡1− μrij

¢1−yrij ,
θrij =

PX
p=1

γrp0xpij +

QX
q=1

γr0qzqj + kri + ur0j ,

and where γ =
£
γ1, γ2, ..., γR

¤
, γr has the covariate parameters of the linear pre-

dictor θrij , k =
£
k1,k2, ...,kR

¤
, and f (u0j) is a multivariate normal distribution

of dimension R with mean zero and variance-covariance structure Σu0 .Sabre
evaluates the integral L (γ,k, φ,Σu0 |y,x, z) using normal Gaussian quadrature
or adaptive Gaussian quadrature (numerical integration).
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9.9 Example L8. Correlated Competing Risk
Model of Filled and Lapsed Vacancies

This example is from a study of the determinants of employer search in the
UK using duration modelling techniques. It involves modelling a job vacancy
duration until either it is successfully filled or withdrawn from the market.
For further details, see Andrews et al (2005). The model has a filled random
effect for the filled sequence and a lapsed random effect for the lapsed sequence.
Rather than treat the ’filled’ and ’lapsed’ response sequences as if they were
independent from each other, we allow for a correlation between the random
effects. There are 7,234 filled vacancies and 5,606 lapsed vacancies.

For each type of risk we used a Weibull baseline hazard, i.e. with log t in
the linear predictor of the complementary log log links and for simplicity the
same 6 covariates. The combined dataset (fillap-c.dta), has 22,682 observa-
tions, each of the 2,374 vacancies being represented twice, with each sequence
of vacancy responses ending in a 1 at the point where the vacancy is filled for a
’filled’ risk, the ’lapsed’ risk is right censored at this point and vice versa for a
’lapsed’ risk.

There are a range of questions that the substantive researcher might be inter-
ested in. These include: what is the significance and magnitude of the the
random effects of each risk (if any) and what is the sign and magnitude of the
correlation between the risks? Would you expect this correlation to be negative
or positive? We may also be interested in comparing the results of the bivariate
model with those of the uncorrelated model, as the results may change as the
model becomes more comprehensive, especially with regard to the inference on
the covariates.

9.9.1 References

Andrews, M.J., Bradley, S., Stott, D., Upward, R., (2005), Successful em-
ployer search? An empirical analysis of vacancy duration using micro data,
see http://www.lancs.ac.uk/staff/ecasb/papers/vacdur_economica.pdf.

9.9.2 Data description for fillap-c.dta

Number of observations: 22682
Number of level-2 cases: 2374

9.9.3 Variables

r: response index, 1 for filled, 2 for lapsed
vacnum: vacancy reference number
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hwage: hourly wage
noemps1: 1 if <= 10 employees, 0 otherwise
noemps2: 1 if 11-30 employees, 0 otherwise
noemps3: 1 if 31-100 employees, 0 otherwise
noemps4: 1 if > 100 employees, 0 otherwise
y: response variable, 1 if vacancy filled, 0 otherwise in a particular week
nonman: 1 if a non-manual vacancy, 0 otherwise
skilled: 1 if a skilled occupation, 0 otherwise
logt: log vacancy duration in weeks
r1: 1 if first response filled, 0 otherwise
r2: 1 if second response lapsed, 0 otherwsie

r vacnum hwage noemps2 noemps3 noemps4 y nonman skilled logt r1 r2
1 2838 1.05 0 0 0 0 1 1 0.0000 1 0
1 2838 1.05 0 0 0 0 1 1 0.6931 1 0
1 2838 1.05 0 0 0 0 1 1 1.0986 1 0
2 2838 1.05 0 0 0 0 1 1 0.0000 0 1
2 2838 1.05 0 0 0 0 1 1 0.6931 0 1
2 2838 1.05 0 0 0 1 1 1 1.0986 0 1
1 2843 1.23 0 0 0 1 1 1 0.0000 1 0
2 2843 1.23 0 0 0 0 1 1 0.0000 0 1
1 2846 1.25 0 0 0 0 0 0 0.0000 1 0
1 2846 1.25 0 0 0 0 0 0 0.6931 1 0
1 2846 1.25 0 0 0 1 0 0 1.0986 1 0
2 2846 1.25 0 0 0 0 0 0 0.0000 0 1
2 2846 1.25 0 0 0 0 0 0 0.6931 0 1
2 2846 1.25 0 0 0 0 0 0 1.0986 0 1
1 2847 2.52 0 0 1 0 1 1 0.0000 1 0
1 2847 2.52 0 0 1 0 1 1 0.6931 1 0
1 2847 2.52 0 0 1 0 1 1 1.0986 1 0
1 2847 2.52 0 0 1 0 1 1 1.3863 1 0
1 2847 2.52 0 0 1 0 1 1 1.6094 1 0
1 2847 2.52 0 0 1 1 1 1 1.7918 1 0
2 2847 2.52 0 0 1 0 1 1 0.0000 0 1
2 2847 2.52 0 0 1 0 1 1 0.6931 0 1
2 2847 2.52 0 0 1 0 1 1 1.0986 0 1

First few lines of filap-c.dta

9.9.4 Sabre commands

log using filled-lapsed_s.log, replace
set mem 200m
set more off
use fillap-c
sabre, data r vacnum hwage noemps2 noemps3 noemps4 y nonman skilled logt r1 r2
sabre r vacnum hwage noemps2 noemps3 noemps4 y nonman skilled logt r1 r2, read
sabre, case vacnum
sabre, yvar y
sabre, model b
sabre, rvar r
sabre, link first=c second=c
sabre, constant first=r1 second=r2
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sabre, trans r1_logt r1 * logt
sabre, trans r1_noemps2 r1 * noemps2
sabre, trans r1_noemps3 r1 * noemps3
sabre, trans r1_noemps4 r1 * noemps4
sabre, trans r1_hwage r1 * hwage
sabre, trans r1_nonman r1 * nonman
sabre, trans r1_skilled r1 * skilled
sabre, trans r2_logt r2 * logt
sabre, trans r2_noemps2 r2 * noemps2
sabre, trans r2_noemps3 r2 * noemps3
sabre, trans r2_noemps4 r2 * noemps4
sabre, trans r2_hwage r2 * hwage
sabre, trans r2_nonman r2 * nonman
sabre, trans r2_skilled r2 * skilled
sabre, nvar 8
#delimit ;
sabre, lfit r1 r1_logt r1_noemps2 r1_noemps3 r1_noemps4 r1_hwage r1_nonman

r1_skilled
r2 r2_logt r2_noemps2 r2_noemps3 r2_noemps4 r2_hwage r2_nonman
r2_skilled;

#delimit cr
sabre, dis m
sabre, dis e
sabre, corr n
sabre, mass first=32 second=32
sabre, nvar 8
#delimit ;
sabre, fit r1 r1_logt r1_noemps2 r1_noemps3 r1_noemps4 r1_hwage r1_nonman

r1_skilled
r2 r2_logt r2_noemps2 r2_noemps3 r2_noemps4 r2_hwage r2_nonman
r2_skilled;

#delimit cr
sabre, dis m
sabre, dis e
sabre, corr y
sabre, mass first=32 second=32
sabre, nvar 8
#delimit ;
sabre, fit r1 r1_logt r1_noemps2 r1_noemps3 r1_noemps4 r1_hwage r1_nonman

r1_skilled
r2 r2_logt r2_noemps2 r2_noemps3 r2_noemps4 r2_hwage r2_nonman
r2_skilled;

#delimit cr
sabre, dis m
sabre, dis e
log close
clear
exit

9.9.5 Sabre log file

Standard complementary log-log/complementary log-log

Number of observations = 22682

X-var df = 16
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Log likelihood = -7294.3634 on 22666 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
r1 -0.71874 0.10059
r1_logt -0.54650 0.31561E-01
r1_noemps2 0.10279E-01 0.70765E-01
r1_noemps3 0.10332 0.77017E-01
r1_noemps4 -0.24391 0.86725E-01
r1_hwage -0.41088 0.77695E-01
r1_nonman -0.38542E-01 0.62045E-01
r1_skilled -0.19629 0.61639E-01
r2 -2.1043 0.11009
r2_logt 0.10615 0.32886E-01
r2_noemps2 -0.17174 0.84481E-01
r2_noemps3 -0.39823 0.10040
r2_noemps4 -0.30067 0.91783E-01
r2_hwage -0.16668 0.77912E-01
r2_nonman 0.10625 0.72740E-01
r2_skilled -0.13553 0.72238E-01

Independent bivariate model

Standard complementary log-log/complementary log-log
Gaussian random effects

Number of observations = 22682
Number of cases = 2374

X-var df = 16
Scale df = 2

Log likelihood = -7287.7119 on 22664 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
r1 -0.73882 0.12176
r1_logt -0.33126 0.11457
r1_noemps2 -0.62864E-02 0.84908E-01
r1_noemps3 0.95274E-01 0.92602E-01
r1_noemps4 -0.24901 0.10348
r1_hwage -0.50311 0.10228
r1_nonman -0.91256E-01 0.78260E-01
r1_skilled -0.24494 0.77469E-01
r2 -2.3474 0.19325
r2_logt 0.39002 0.14721
r2_noemps2 -0.21549 0.10585
r2_noemps3 -0.49738 0.13083
r2_noemps4 -0.33570 0.11693
r2_hwage -0.21624 0.10120
r2_nonman 0.88611E-01 0.89750E-01
r2_skilled -0.18809 0.91930E-01
scale1 0.71227 0.20805
scale2 0.76498 0.23191

Correlated bivariate model



112 9. Event History Models

Standard complementary log-log/complementary log-log
Gaussian random effects

Number of observations = 22682
Number of cases = 2374

X-var df = 16
Scale df = 3

Log likelihood = -7217.7072 on 22663 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
r1 -0.96329 0.15666
r1_logt -0.35523 0.87898E-01
r1_noemps2 0.37481E-01 0.10638
r1_noemps3 0.18021 0.11994
r1_noemps4 -0.23653 0.13044
r1_hwage -0.53793 0.12288
r1_nonman -0.10936 0.95910E-01
r1_skilled -0.26235 0.96725E-01
r2 -7.6478 1.5206
r2_logt 2.7385 0.72471
r2_noemps2 -0.75970 0.38966
r2_noemps3 -1.6889 0.51056
r2_noemps4 -1.0762 0.44983
r2_hwage -0.26480 0.39838
r2_nonman 0.47016 0.32326
r2_skilled -0.36773 0.33192
scale1 1.2887 0.16222
scale2 5.2516 1.1412
corr -0.89264 0.35399E-01

9.9.6 Discussion

These results show what happens when we first add vacancy specific random
effects, there is a change in likelihood of

−2(−7294.3634− (−7287.7119)) = 13. 303,

over the homogeneous model. When we allow for a correlation between the
random effects of the filled and lapsed durations there is a change in likelhood
of

−2(−7287.7119− (−7217.7072)) = 140. 01,
over the model that assumes indepdence between the filled and lapsed exits
from a vacancy. These last results show the different level of overdispersion in
the different responses and a negative correlation between the random effects
of the two risks. This may be expected, as a filled vacancy can not lapse and
vice versa. The random effect of the filled vacancies has a standard deviation of
1.2887 (s.e. 0.16222),and that of the lapsed vacancies is a lot larger at 5.2516
(s.e. 1.1412), their correlation is -0.89264 (s.e. 0.035399).
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It should be noticed that the inference on duration effects from the model that
assumes independence between the random effcts of the filled and lapsed du-
rations are quite different to those that allow for a correlation. For instance
r2_logt 39002 (s.e. 0.14721),becomes 2.7385 (s.e. 0.72471).in the correlated
model. The value of the coefficient on r2_logt suggests that the longer a va-
cancy goes unfilled the longer it is likley to be unfilled. Differences also occur for
the firm size effects (r2_noemps) which are over 2 times bigger in the correlated
model.
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9.9.7 Exercises

Exercises L12 is for a multivariate competing risk model.
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Chapter 10

Stayers, Non-susceptibles
and Endpoints

10.1 Introduction

There are several empirical contexts in which a subset of the population might
behave differently to those that follow the proposed GLMM. For instance, in a
migration study, we could observe a large group of respondents who do not move
outside the study region over the study period. These observed non-migrators
could be made up of two distinct groups: those that consider migrating, but are
not observed to do so; and those that would never ever consider migrating (the
stayers). This phenomenon can occur in various contexts, e.g. zero-inflated Pois-
son Model (Green,1994 and Lambert, 1992); the mover-stayer model (Goodman,
1961) and in the competing risk context, where some individuals are not vulner-
able to an exit condition, e.g. few unemployed males will seek part-time work.
In biometric research, these ‘stayers’ are often referred to as non-susceptibles.

It has often been noted that the goodness-of-fit of mixture models like GLMMs
can be improved by adding a spike to the parametric distribution for the random
effects to represent stayers, explicitly resulting in a ‘spiked distribution’ (Singer
and Spillerman, 1976). Non-parametric representations of the random effects
distribution, e.g. Heckman and Singer(1984), Davies and Crouchley (1986) can
have the flexibility to accommodate stayers. However, non parametric random
effects distributions can require a lot of parameters (mass point locations and
probabilities), while spiked distributions are generally more parsimonious.

Sabre assumes a Gaussian or normal probability distribution for the random
effects with mean zero and standard deviation to be estimated from the data,
see Figure 10.1.
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Figure 10.1. The Normal Distribution

This distribution is approximated by a number of mass (or quadrature) points
with specified probabilities at given locations. This is illustrated by the solid
vertical lines in Figure 10.2. Increasing the number of quadrature points, in-
creases the accuracy of the computation at the expense of computer time.

Figure 10.2. Quadrature Points Approximate the Normal Distribution
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To compensate for the limitations of the Gaussian distribution for the random
effects (i.e. tending to zero too quickly at the extremes), Sabre has the flexibility
to supplement the quadrature points with endpoints (i.e. delta functions at plus
and/or minus infinity) whose probabilities can be estimated from the data, see
Figure 10.3. This flexibility may be needed when modelling binary data.

Figure 10.3. Quadrature with Left and Right Endpoints

With the Poisson model, a single left endpoint at minus infinity, see Figure 10.4,
allows for extra zeros.

Figure 10.4. Quadrature Points and Left Endpoint
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10.2 Likelihood with Endpoints

To allow for stayers in GLMMs, we need to extend our notation. Let the two
types of ‘stayer’ be denoted by Sr and Sl for the right (plus infinity) and left
(minus infinity) spikes and let the probability of these events be Pr [Sr] and
Pr [Sl] .

In a binary response 2-level GLMM, let Tj be the length of the observed se-
quence, and Σj =

P
i yij , where yij is the binary response of individual j at

occasion i. Let Sl = [0, 0, ..., 0] represent a sequence without any moves, and let
Sr = [1, 1, ..., 1] represent a sequence with moves at every point. The likelihood
of the binary response GLMM with endpoints takes the form

L
¡
γ, φ, σ2u0 |y,x, z

¢
=
Y
j

⎧⎨⎩ Pr [Sl] .0
Σj +Pr [Sr] .0

Tj−Σj+

(1− Pr [Sl]− Pr [Sr])
Z Q

i
g (yij | θij, φ) f (u0j) du0j

⎫⎬⎭ ,

where
g (yij | θij , φ) = exp {[yijθij − b (θij)] /φ+ c (yij , φ)} ,

θij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j ,

and

f (u0j) =
1√
2πσu0

exp

Ã
−

u20j
2σ2u0

!
,

as before. We parameterise Pr [Sl] and Pr [Sr]as

Pr [Sl] =
l

1 + l
,

Pr [Sr] =
r

1 + r
,

where l, r > 0.

In a zero-inflated Poisson GLMM, Sl = [0, 0, ..., 0] represents a sequence with
zero counts at every point. There is no Sr, so that Pr [Sr] = 0. Then the above
likelihood simplifies to:

L
¡
γ, φ, σ2u0 |y,x, z

¢
=
Y
j

⎧⎨⎩ Pr [Sl] .0
Σj+

(1− Pr [Sl])
Z Q

i
g (yij | θij , φ) f (u0j) du0j

⎫⎬⎭ .

The binary and Poisson models can be extended in two ways: (1) to allow
for between individual (j) variation in the probability of being a stayer, we
can make Pr [Sl] (and Pr [Sr]) a function of time-constant covariates and write
Pr [Slj ] (and Pr [Srj ]); (2) to allow Pr [Sl] to vary over response occasions (i) as
well as between individuals (j) we can write Pr [Slij ]. However, these extensions
have not yet been implemented in Sabre.
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10.3 End-points: Poisson and Binary Response
Examples

Both of these examples are concerned with individuals’ migration histories
within Great Britain, where migration is a residential move between two coun-
ties.

The data we use are derived from a large retrospective survey of life and work
histories carried out in 1986 under the Social Change and Economic Life Ini-
tiative (SCELI), funded by the ESRC. The data were therefore not specifically
collected for the study of migration, but were drawn from an existing data set
which includes information on where individuals had lived all their working lives.
Temporary moves of a few months duration do not imply commitment to a new
area and are not regarded as migration. Migration data are therefore recorded
on an annual basis.

The respondents were aged 20 to 60 and lived in the travel-to-work area of
Rochdale, just to the north of Manchester, UK. (Rochdale was one of six local-
ities chosen for their contrasting experience of recent economic change.) As the
analysis is concerned with internal migration within Great Britain, individuals
who had lived abroad during their working lives are excluded from the data
set. For simplicity, we ignore the complications due to differential pushes and
pulls of different regions in the following Poisson and binary response models of
migration behaviour.

10.3.1 Poisson Model

For each individual, we have summed the number of annual migrations recorded
in the survey, to produce one line of information. This information is contained
in rochmigx.dta. Table 10.1 summarizes the observed migration frequencies
for the 348 respondents in the sample. As the individuals ranged in age from
20 to 60, they have varying lengths of migration history.

Number of moves 0 1 2 3 4 5 >=6
Observed frequency 228 34 42 17 9 8 10

Table 10.1. Observed migration frequencies

10.3.2 Data description for rochmigx.dta

Number of observations (rows): 384
Number of level-2 cases: 384
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10.3.3 Variables

case: case number
n: number of annual migrations since leaving school
t: number of years since leaving school
ed: educational qualification; a factor variable with 5 levels:

• 1=Degree or equivalent; professional qualifications with a degree

• 2=Education above A-level but below degree level; includes professional
qualifications without a degree

• 3=A-level or equivalent

• 4=Other educational qualification

• 5=None

case n t ed
50004 2 7 4
50008 0 3 4
50011 0 16 5
50016 5 9 4
50018 1 22 3
50020 0 21 5
50026 7 32 2
50028 0 31 4
50032 2 39 5
50046 0 5 4
50047 0 38 3
50057 0 12 5
50060 0 28 2
50064 0 2 3
50069 0 29 4
50071 0 8 2
50074 0 4 5
50075 0 11 5
50077 0 7 3
50079 7 26 3
50084 5 32 4

First few lines of rochmigx.dta

To model heterogeneity in migration propensity due to unmeasured and unmea-
surable factors, we use a Poisson GLMM. To see if there is an inflated number of
zeros in the count data, we allow for the left endpoint (Sl = [0]). In the Sabre do
file below, you will notice that after transferring the data to Sabre, we reverse
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the coding of education, estimate a non-random effects model, a random effects
model and a random effects model with the left endpoint.

Sabre commands

log using rochmigx_s.log, replace
set more off
use rochmigx
sabre, data case n t ed
sabre case n t ed, read
sabre, case case
sabre, yvar n
sabre, family p
sabre, trans logt log t
sabre, trans ned ed - 6
sabre, trans reved ned * -1
sabre, fac reved fed
sabre, constant cons
sabre, lfit cons logt
sabre, dis m
sabre, dis e
sabre, lfit cons logt fed
sabre, dis m
sabre, dis e
sabre, quad a
sabre, mass 24
sabre, fit cons logt
sabre, dis m
sabre, dis e
sabre, fit cons logt fed
sabre, dis m
sabre, dis e
sabre, end l
sabre, fit cons logt
sabre, dis m
sabre, dis e
sabre, fit cons logt fed
sabre, dis m
sabre, dis e
log close
clear
exit

Sabre log file

X-vars Y-var Case-var
________________________________________________
cons n case
logt
fed

Univariate model
Standard Poisson
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Gaussian random effects

Number of observations = 348
Number of cases = 348

X-var df = 6
Scale df = 1

Log likelihood = -417.15252 on 341 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
cons -4.7394 0.62820
logt 1.2670 0.18110
fed ( 1) 0.0000 ALIASED [I]
fed ( 2) 0.25333 0.24925
fed ( 3) -0.26454E-01 0.42727
fed ( 4) 0.68149 0.42215
fed ( 5) 0.67896 0.36583
scale 1.2401 0.12924

Univariate model
Standard Poisson
Gaussian random effects, with left endpoint

Number of observations = 348
Number of cases = 348

X-var df = 6
Scale df = 1
Endpoint df = 1

Log likelihood = -404.73727 on 340 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
cons -2.6920 0.57807
logt 0.97278 0.15614
fed ( 1) 0.0000 ALIASED [I]
fed ( 2) 0.44241 0.18511
fed ( 3) -0.33954E-01 0.32195
fed ( 4) 0.67488 0.32357
fed ( 5) 0.32689 0.27761
scale 0.44976 0.13011

PROBABILITY
___________

endpoint 0 0.92766 0.19008 0.48124

The log file shows that the random effects model with endpoints (stayers)
has an improved log likelihood (−404.73727), when compared to the random
effects model without stayers (−417.15252). In this case, the difference in
log-likelihoods is not chi-square distributed, as under the null hypothesis, the
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Pr [Sl] = [0] is on the edge of the parameter space. However, we can say that
the probability that a randomly sampled individual is a stayer is estimated to
be 0.48124.

The Poisson GLMM with an endpoint suggests: (1) that educational qualifica-
tions do significantly affect the likelihood of migration; (2) that there is evidence
that the probability of migration varies markedly between individuals and (3)
that the sample contains a highly significant number of "stayers".

With a single count of the number of annual migrations over an individual’s
working life, we can not distinguish between a heterogeneous population, with
some individuals having a consistently high propensity to migrate and others
a consistently low propensity to migrate, and a truly contagious process, i.e.
one in which an individual’s experience of migration increases the probability
of subsequent migration.

The Poisson model assumes that the intervals between events are exponentially
distributed, i.e. do not depend on duration of stay at a location. To examine
this, we include duration in the next model.

10.3.4 Binary Response Model

In this part we use the data set rochmig.dta and model the individual binary
response of whether or not there was a migration move in each calendar year.

10.3.5 Data description for rochmig.dta

Number of observations: 6349
Number of level-2 cases: 348

10.3.6 Variables

case: Case number
move: 1 if migration takes place in the year, 0 otherwise
age: age in years
year: calendar year
dur: duration of stay at each address

The data set (rochmig.dta) also contains a range of individual-specific covari-
ates, though we do not use them in this particular exercise. These covariates
include: education, employment status: esb2=1 (self employed), esb2=2 (em-
ployed), esb2=3 (not working); occupational status: osb3=1 (small proprietors,
supervisors), osb3=0 (otherwise), promotion to service class: ops=0 (no), ops=1
(yes); first marriage: mfm=0 (no), mfm=1 (yes); marital break-up: mbu=0
(no), mbu=1 (yes); remarriage: mrm=0 (no), mrm=1 (yes); presence of chil-
dren age 15-16: ch3=0 (no), ch3=1 (yes); marital status: msb2=0 (not married),
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msb2=1 (married).

case move age year dur ed ch1 ch2 ch3 ch4 msb mse esb ese osb ose mbu mrm mfm msb1 epm eoj esb1 ops osb1 msb2
50004 1 17 79 1 4 0 0 0 0 1 1 7 7 60 71 0 0 0 1 0 0 3 0 3 0
50004 0 18 80 1 4 0 0 0 0 1 1 7 7 71 71 0 0 0 1 0 0 3 0 2 0
50004 0 19 81 2 4 0 0 0 0 1 1 7 7 71 71 0 0 0 1 0 0 3 0 2 0
50004 1 20 82 3 4 0 0 0 0 1 1 7 7 71 60 0 0 0 1 0 0 3 0 2 0
50004 0 21 83 1 4 0 0 0 0 1 1 7 7 60 32 0 0 0 1 0 0 3 0 3 0
50004 0 22 84 2 4 0 0 0 0 1 1 7 0 32 0 0 0 0 1 0 0 3 0 6 0
50004 0 23 85 3 4 0 0 0 0 1 2 0 7 0 71 0 0 1 1 0 1 4 0 1 0
50008 0 18 83 1 4 0 0 0 0 1 1 7 0 31 0 0 0 0 1 0 0 3 0 6 0
50008 0 19 84 2 4 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 4 0 1 0
50008 0 20 85 3 4 0 0 0 0 1 1 0 7 0 71 0 0 0 1 0 1 4 0 1 0
50011 0 16 70 1 5 0 0 0 0 1 1 7 7 71 71 0 0 0 1 0 0 3 0 2 0
50011 0 17 71 2 5 0 0 0 0 1 1 7 7 71 71 0 0 0 1 0 0 3 0 2 0
50011 0 18 72 3 5 0 0 0 0 1 1 7 7 71 71 0 0 0 1 0 0 3 0 2 0
50011 0 19 73 4 5 0 0 0 0 1 1 7 7 71 71 0 0 0 1 0 0 3 0 2 0
50011 0 20 74 5 5 0 0 0 0 1 1 7 7 71 71 0 0 0 1 0 0 3 0 2 0
50011 0 21 75 6 5 0 0 0 0 1 1 7 7 71 71 0 0 0 1 0 0 3 0 2 0
50011 0 22 76 7 5 0 0 0 0 1 1 7 7 71 71 0 0 0 1 0 0 3 0 2 0
50011 0 23 77 8 5 0 0 0 0 1 1 7 7 71 71 0 0 0 1 0 0 3 0 2 0

First few lines of rochmig.dta

The sabre do file starts by transforming age and producing up to the 6th power
of this transformed age effect (stage, stage2,..., stage6). The do file then
estimates a range of homogeneous binary response models (logit link) before
estimating a binary response GLMM using adaptive quadrature with 12 mass
points. The final estimated model has lower and upper endpoints. The illus-
trated model was selected from a range of models estimated on these data, as
can be seen from the TRAMSS web site,
http://tramss.data-archive.ac.uk/documentation/migration/migpag0.htm#Top.

Sabre commands

log using rochmig1_s.log, replace
set more off
use rochmig
#delimit ;
sabre, data case move age year dur ed ch1 ch2 ch3 ch4 msb mse esb ese osb

ose mbu mrm mfm msb1 epm eoj esb1 ops osb1 msb2 esb2 osb2 osb3;
sabre case move age year dur ed ch1 ch2 ch3 ch4 msb mse esb ese osb ose mbu

mrm mfm msb1 epm eoj esb1 ops osb1 msb2 esb2 osb2 osb3, read;
#delimit cr
sabre, case case
sabre, yvar move
sabre, fac dur fdur 5 10 15 20 25 30
sabre, fac year fyear 55 60 65 70 75 80
sabre, fac age fage 20 25 30 35 40 45
sabre, trans logdur log dur
sabre, trans year2 year * year
sabre, trans year3 year2 * year
sabre, trans age2 age * age
sabre, trans age3 age2 * age
sabre, trans age4 age3 * age
sabre, trans age5 age4 * age
sabre, trans age6 age5 * age
sabre, trans stage1 age - 30
sabre, trans stage stage1 / 10
sabre, trans stage2 stage * stage
sabre, trans stage3 stage2 * stage
sabre, trans stage4 stage3 * stage
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sabre, trans stage5 stage4 * stage
sabre, trans stage6 stage5 * stage
sabre, constant cons
sabre, lfit cons fdur fyear fage
sabre, dis m
sabre, dis e
sabre, lfit cons dur year year2 year3 age age2 age3 age4 age5 age6
sabre, dis m
sabre, dis e
#delimit ;
sabre, lfit cons dur year year2 year3 stage stage2 stage3 stage4 stage5

stage6;
#delimit cr
sabre, dis m
sabre, dis e
#delimit ;
sabre, lfit cons logdur year year2 year3 stage stage2 stage3 stage4 stage5

stage6;
#delimit cr
sabre, dis m
sabre, dis e
sabre, lfit cons logdur year year2 stage stage2 stage3 stage4 stage5 stage6
sabre, dis m
sabre, dis e
sabre, lfit cons logdur year stage stage2 stage3 stage4 stage5 stage6
sabre, dis m
sabre, dis e
sabre, quad a
sabre, mass 12
sabre, fit cons logdur year stage stage2 stage3 stage4 stage5 stage6
sabre, dis m
sabre, dis e
sabre, end b
sabre, fit cons logdur year stage stage2 stage3 stage4 stage5 stage6
sabre, dis m
sabre, dis e
log close
clear
exit

Sabre log file

Univariate model
Standard logit
Gaussian random effects

Number of observations = 6349
Number of cases = 348

X-var df = 9
Scale df = 1

Log likelihood = -1072.0095 on 6339 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
cons 1.0442 0.77669
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logdur -0.69751 0.10795
year -0.47716E-01 0.10365E-01
stage 0.63781E-01 0.34303
stage2 0.43262E-01 0.60000
stage3 -0.84894 0.53921
stage4 0.35929 0.55120
stage5 0.58352 0.21340
stage6 -0.28447 0.15054
scale 0.94736 0.16065

Univariate model
Standard logit
Gaussian random effects, with endpoints

Number of observations = 6349
Number of cases = 348

X-var df = 9
Scale df = 1
Endpoint df = 2

Log likelihood = -1066.8979 on 6337 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
cons 0.83264 0.77005
logdur -0.65921 0.10462
year -0.36505E-01 0.10856E-01
stage -0.69719E-01 0.34062
stage2 0.76791E-01 0.59487
stage3 -0.82208 0.53733
stage4 0.33145 0.54900
stage5 0.56759 0.21311
stage6 -0.27657 0.15032
scale 0.47666 0.17356

PROBABILITY
___________

endpoint 0 0.56709 0.19694 0.36124
endpoint 1 0.27462E-02 0.46369E-02 0.17494E-02

By adding both endpoints to the binary response GLMM, the log-likelihood
has increased from -1072.0095 to -1066.8979. The chi-square test is not strictly
valid, as under the null hypothesis of no endpoints, the endpoint parameters
lie on the edge of the parameter space. However, this change suggests that
endpoints are needed. The probability of 0.36 associated with the left endpoint
gives a measure of the proportion of "stayers" in the population, i.e. those
individuals never likely to migrate. Examination of the parameter estimate and
standard error of the right endpoint (and corresponding probability of 0.0017)
suggests that this parameter (which estimates the proportion of the population
migrating every year) could be set to zero.

The coefficient estimate of logdur (log duration) is negative, but is considerably
smaller in magnitude than its effect in the simple logistic model. The coefficient
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of logdur measures cumulative inertia effects, and its value confirms that there
is an increasing disinclination to move with increasing length of residence. Infer-
ence about duration effects can be misleading unless there is control for omitted
variables (Heckman and Singer, 1984).

The random effects are significant in the binary response GLMM with end-
points: the scale parameter equals 0.47666 (s.e. 0.17356). We could improve
our model of migration by adding explanatory variables which measure life cycle
factors, such as marriage, occupation and employment status and the presence
of children in the family. For this, and more details on the interpretation of the
age effects in this model, see the TRAMSS site,
http://tramss.data-archive.ac.uk/documentation/migration/migpag0.htm#Top.

10.4 Exercises
There are three endpoint exercises to accompany this section. These exercises
are: EP1 (binary response model of trade union membership); EP2 (Poisson
model of fish catches) and EP3 (binary response model of female labour market
participation).
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Chapter 11

State Dependence Models

11.1 Introduction
Longitudinal and panel data on recurrent events are substantively important
in social science research for two reasons. First, they provide some scope for
extending control for variables that have been omitted from the analysis. For
example, differencing provides a simple way of removing time-constant effects
(both omitted and observed) from the analysis. Second, a distinctive feature of
social science theory is that it postulates that behaviour and outcomes are typ-
ically influenced by previous behaviour and outcomes, that is, there is positive
‘feedback’ (e.g. the McGinnis (1968) ‘axiom of cumulative inertia’). A fre-
quently noted empirical regularity in the analysis of unemployment data is that
those who were unemployed in the past (or have worked in the past) are more
likely to be unemployed (or working) in the future (Heckman, 2001, p. 706).
Heckman asks whether this is due to a causal effect of being unemployed (or
working) or whether it is a manifestation of a stable trait. These two issues are
related because inference about feedback effects are particularly prone to bias if
the additional variation due to omitted variables (stable trait) is ignored. With
dependence upon previous outcome, the explanatory variables representing the
previous outcome will, for structural reasons, normally be correlated with omit-
ted explanatory variables and therefore will always be subject to bias using
conventional modelling methods. Understanding of this generic substantive is-
sue dates back to the study of accident proneness by Bates and Neyman (1952)
and has been discussed in many applied areas, including consumer behaviour
(Massy et al., 1970) and voting behaviour (Davies and Crouchley, 1985).

An important attraction of longitudinal data is that, in principle, they make it
possible to distinguish a key type of causality, namely state dependence {SD},
i.e. the dependence of current behaviour on earlier or related outcomes, from
the confounding effects of unobserved heterogeneity {H}, or omitted variables
and non-stationarity {NS}, i.e. changes in the scale and relative importance of
the systematic relationships over time. Large sample sizes reduce the problems
created by local maxima in disentangling the H, SD and NS effects.

Most observational schemes for collecting panel and other longitudinal data
commence with the process already under way. They will therefore tend to
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have an informative start; the initial observed response is typically dependent
upon pre-sample outcomes and unobserved variables. In contrast to time series
analysis and, as explained by Anderson and Hsiao (1981), Heckman (1981a,b),
Bhargava and Sargan (1983) and others, failure to allow for this informative
start when SD and H are present will prejudice consistent parameter estimation.
Various treatments of the initial conditions problem for recurrent events with
SD using random effects for H have been proposed; see for example: Crouchley
and Davies (2001), Wooldridge (2005), Alfo and Aitkin (2006), Kazemi and
Crouchley (2006), Stewart (2007). We will concentrate on first order models for
state dependence in linear, binary and count response sequences.

11.2 Motivational Example

The data in Table 11.1 were collected in a one-year panel study of depression
and help-seeking behaviour in Los Angeles (Morgan et al, 1983). Adults were
interviewed during the spring and summer of 1979 and re-interviewed at thee-
monthly intervals. A respondent was classified as depressed if they scored >16
on a 20-item list of symptoms.

Season (i)
y1j y2j y3j y4j Frequency
0 0 0 0 487
0 0 0 1 35
0 0 1 0 27
0 0 1 1 6
0 1 0 0 39
0 1 0 1 11
0 1 1 0 9
0 1 1 1 7
1 0 0 0 50
1 0 0 1 11
1 0 1 0 9
1 0 1 1 9
1 1 0 0 16
1 1 0 1 9
1 1 1 0 8
1 1 1 1 19

Table 11.1. Depression data from Morgan et al (1983)
Note: 1 = depressed, 0 = not depressed

Morgan et al (1983) concluded that there is strong temporal dependence in
this binary depression measure and that the dependence is consistent with a
mover-stayer process in which depression is a stationary, Bernoulli process for
an ‘at risk’ subset of the population. Davies and Crouchley (1986) showed that
a more general mixed Bernoulli model provides a significantly better fit to the
data. However, by its very nature, depression is difficult to overcome suggesting
that state dependence might explain at least some of the observed temporal de-
pendence, although it remains an empirical issue whether true contagion extends
over three months. We might also expect seasonal effects due to the weather.
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In other words, what is the relative importance of state dependence (first or-
der Markov), non-stationarity (seasonal effects) and unobserved heterogeneity
(differences between the subjects) in the Morgan et al (1983) depression data?

In two-level GLMs, the subject-specific unobserved random effects u0j are in-
tegrated out of the joint distribution for the responses to obtain the likelihood
function. Thus

L
¡
γ, φ, σ2u0 |y,x, z

¢
=
Y
j

+∞Z
−∞

TY
i=1

g (yij | θij , φ) f (u0j | x, z) du0j ,

where we have extended the notation of f (u0j | x, z) to acknowledge the pos-
sibility that the multilevel random effects (u0j) can depend on the regressors
(x, z) . For notational simplicity, we have assumed that all the sequences are of
the same length (T ), though this can be easily relaxed by replacing T with Tj
in the likelihood function.

To allow for state dependence (specifically first order Markov effects) we need
to further augment our standard notation. We do this by adding the previous
response (yi−1j) to the linear predictor of the model for yij so that

θij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + δyi−1j + u0j , i = 2, ..., T,

where δ is the new parameter associated with first order Markov state depen-
dence. We also explicitly acknowledge this change to the GLM by writing the
response model as g (yij | yi−1j , θij , φ) .
This treatment of state dependence can be appropriate for modelling ongoing
responses. However it begs the question: what do we do about the first ob-
servation? In panel data, the data window usually samples an ongoing process
and the information collected on the initial observation rarely contains all of
the pre-sample response sequence and its determinants back to inception. The
implications of this will be explored. For the moment, we will write the response
model for the initial observed response y1j as g

¡
y1j | θ1j , φ1

¢
to allow the para-

meters and multilevel random effects for the initial response to be different to
those of subsequent responses, so that

L
¡
γ1, γ, δ, φ1, φ, σ2u0 |y,x, z

¢
=

Y
j

+∞Z
−∞

g
¡
y1j | θ1j , φ1

¢ TY
i=2

g (yij | yi−1j , θij , φ) f (u0j | x, z) du0j .

To the responses
yj = [y1j,y2j , y3j , ..., yT ] ,

we can relate time-varying regressors

xj = [x1j ,x2j,...,xTj ] ,



132 11. State Dependence Models

and time-constant regressors
zj = [zj ] .

In particular, for the initial response

θ1j = γ100 +
PX
p=1

γ1p0xp1j +

QX
q=1

γ10qzqj + u0j .

In this likelihood, we have the same random effect (u0j) for both the initial
response and subsequent responses. This assumption will be relaxed later.

If we omit the first term on the right hand side of this likelihood function,
we have conditioning on the initial response. The data window interrupts an
ongoing process, whereby the initial observation y1j will, in part, be determined
by u0j , and this simplification may induce inferential error.

This problem was examined by Anderson and Hsiao (1981) for the linear model.
They compared Ordinary Least Squares, Generalised Least Squares, and Max-
imum Likelihood Estimation (MLE) for a number of different cases. MLE has
desirable asymptotic properties when time T or sample size N (or both) →∞.
In conventional panel studies, T is fixed and often small. For random (i.e.
endogenous) y1j , only MLE provides consistent parameter estimation but this
requires the inclusion of

g
¡
y1j | θ1j , φ1

¢
in the likelihood. Specification of this density is itself problematic for non-linear
models, as emphasised by Diggle et al (1994, p193). Heckman (1981b) suggests
using an approximate formulation including whatever covariates are available.
Various treatments of the initial conditions problem for recurrent events with
state dependence using random effects for heterogeneity have been proposed;
see for example: Crouchley and Davies (2001), Wooldridge (2005), Alfo and
Aitkin (2006), Kazemi and Crouchley (2006), Stewart (2007).

We will review the alternative treatments of the initial conditions problem and
illustrate them on the binary depression data.

11.3 First Order Markov State Dependence in
GLMs

11.3.1 Conditional Model: Conditional on the Initial Re-
sponse

If we omit the model for the initial response from the likelihood, we get

Lc
¡
γ, δ, φ, σ2u0 |y, x, z

¢
=
Y
j

+∞Z
−∞

TY
i=2

g (yij | yi−1j , θij , φ) f (u0j | x, z) du0j .

For the responses
yj = [y2j , y3j , ..., yTj ] ,
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we have included the lagged response in the time-varying regressors

xij = [xij , yi−1j ] ,

zj = [zj ] .

Further we are ignoring any dependence of the random effects on the regressors:

f (u0j | x, z) = f (u0j) .

The above likelihood simplifies to

Lc
¡
γ, δ, φ, σ2u0 |y,x, z

¢
=
Y
j

+∞Z
−∞

TY
i=2

g (yij | yi−1j , θij , φ) f (u0j) du0j ,

with

θij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + δyi−1j + u0j

for i = 2, ..., T.

11.4 Depression example

In this section, we will estimate a model for the binary depression data depression2.dta.
This is a version of the data without the initial response. The model includes a
constant, dummy variables for seasons 3 and 4 and the lagged response variable.

11.4.1 Data description for depression2.dta

Number of observations: 2256
Number of level-2 cases: 752

11.4.2 Variables

ind: individual indentifier
t: season
t2: 1 if t=2, 0 otherwise
t3: 1 if t=3, 0 otherwise
t4: 1 if t=4, 0 otherwise
s: 1 if the respondent is depressed, 0 otherwise
s1: baseline response
s_lag1:lag 1 response
s_lag2:lag 2 response (not used)
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ind t t2 t3 t4 s s1 s_lag1 s_lag2
1 2 1 0 0 0 0 0 -9
1 3 0 1 0 0 0 0 0
1 4 0 0 1 0 0 0 0
2 2 1 0 0 0 0 0 -9
2 3 0 1 0 0 0 0 0
2 4 0 0 1 0 0 0 0
3 2 1 0 0 0 0 0 -9
3 3 0 1 0 0 0 0 0
3 4 0 0 1 0 0 0 0
4 2 1 0 0 0 0 0 -9
4 3 0 1 0 0 0 0 0
4 4 0 0 1 0 0 0 0
5 2 1 0 0 0 0 0 -9
5 3 0 1 0 0 0 0 0
5 4 0 0 1 0 0 0 0
6 2 1 0 0 0 0 0 -9
6 3 0 1 0 0 0 0 0

Figure 11.1: First few lines of depression2.dta

11.4.3 Sabre commands

log using depression1_s.log, replace
set more off
use depression2
sabre, data ind t t2 t3 t4 s s1 s_lag1 s_lag2
sabre ind t t2 t3 t4 s s1 s_lag1 s_lag2, read
sabre, case ind
sabre, yvar s
sabre, link p
sabre, constant cons
sabre, lfit t3 t4 s_lag1 cons
sabre, dis m
sabre, dis e
sabre, mass 24
sabre, fit t3 t4 s_lag1 cons
sabre, dis m
sabre, dis e
log close
clear
exit

11.4.4 Sabre log file

The first few lines of depression2.dta

(Standard Homogenous Model)
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Parameter Estimate Std. Err.
___________________________________________________
(intercept) -1.2636 0.61874E-01
t3 -0.13649 0.84561E-01
t4 -0.15150E-02 0.82817E-01
s_lag1 1.0480 0.79436E-01

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -1.2942 0.72379E-01
t3 -0.15466 0.88638E-01
t4 -0.21480E-01 0.87270E-01
s_lag1 0.94558 0.13563
scale 0.32841 0.18226

X-vars Y-var Case-var
________________________________________________
(intercept) response case.1
t3
t4
s_lag1

Univariate model
Standard probit
Gaussian random effects

Number of observations = 2256
Number of cases = 752

X-var df = 4
Scale df = 1

Log likelihood = -831.56731 on 2251 residual degrees of freedom

11.4.5 Discussion

The coefficient on yi−1j (s_lag1) is 0.94558 (s.e. 0.13563), which is highly
significant, but the scale parameter (σ) is of marginal significance, suggesting a
nearly homogeneous first order model. Can we trust this inference?
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11.5 Conditioning on the initial response but al-
lowing the random effect u0j to be depen-
dent on zj, Wooldridge (2005)

Wooldridge (2005) proposes that we drop the term g
¡
y1j | θ1j , φ1

¢
and use the

conditional likelihood

Lc
¡
γ, δ, φ, σ2u0 |y,x, z

¢
=
Y
j

+∞Z
−∞

TY
i=2

g (yij | yi−1j , θij , φ) f (u0j | x, z) du0j ,

where
yj = [y2j , y3j , ..., yTj ] ,

zj = [zj , y1j] ,

xij = [xij , yi−1j ] ,

but rather than assume u0j is iid, i.e. f (u0j | x, z) = f (u0j) as in Section 11.3.1
we use

f (u0j | x, z) = f (u0j | z) .

By allowing the omitted (random) effects to depend on the initial response

u0j = κ00 + κ1y1j +

QX
q=1

κ0qzqj + uw0j ,

where uw0j is independent and identically distributed, we get

θij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + δyi−1j + u0j

= γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + δyi−1j + κ00 + κ1y1j +

QX
q=1

κ0qzqj + uw0j

= (γ00 + κ00) +
PX
p=1

γp0xpij +

QX
q=1

(γ0q + κ0q)zqj + δyi−1j + κ1y1j + uw0j

= γw00 +
PX
p=1

γp0xpij +

QX
q=1

γw0qzqj + δyi−1j + κ1y1j + uw0j .

This implies that coefficients on the constant (γ00 + κ00) = γw00 and the time-
constant covariates (γ0q + κ0q) = γw0qwill be confounded. The ability of the
auxiliary model

u0j = κ00 + κ1y1j +

QX
q=1

κ0qzqj + uw0j
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to account for the dependence in f (u0j | x, z) will depend to some extent on the
nature of the response (yij) . For binary initial responses (y1j) only one para-
meter κ1 is needed, but for the linear model and count data, polynomials in y1j
may be needed to account more fully for the dependence. Also, as Wooldridge
(2005) suggests, we can include interaction effects between the y1j and zqj .

Crouchley and Davies (1999) raise inferential issues about the inclusion of base-
line responses (initial conditions) in models without state dependence.

11.6 Depression example

The model for the binary depression data depression2.dta, ignoring the model
for the initial response, has constant, dummy variables for seasons 3 and 4, the
lagged response variable and the initial response.

11.6.1 Sabre commands

log using depression2_s.log, replace
set more off
use depression2
sabre, data ind t t2 t3 t4 s s1 s_lag1 s_lag2
sabre ind t t2 t3 t4 s s1 s_lag1 s_lag2, read
sabre, case ind
sabre, yvar s
sabre, link p
sabre, constant cons
sabre, lfit t3 t4 s_lag1 s1 cons
sabre, dis m
sabre, dis e
sabre, mass 24
sabre, fit t3 t4 s_lag1 s1 cons
sabre, dis m
sabre, dis e
log close
clear
exit

11.6.2 Sabre log file

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -1.3390 0.65010E-01
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t3 -0.12914 0.85893E-01
t4 -0.70059E-02 0.84373E-01
s_lag1 0.69132 0.96958E-01
s1 0.62535 0.93226E-01

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
(intercept) -1.6646 0.11654
t3 -0.20988 0.99663E-01
t4 -0.88079E-01 0.97569E-01
s_lag1 0.43759E-01 0.15898
s1 1.2873 0.19087
scale 0.88018 0.12553

X-vars Y-var Case-var
________________________________________________
(intercept) response case.1
t3
t4
s_lag1
s1

Univariate model
Standard probit
Gaussian random effects

Number of observations = 2256
Number of cases = 752

X-var df = 5
Scale df = 1

Log likelihood = -794.75310 on 2250 residual degrees of freedom

11.6.3 Discussion

This model has the lagged response s_lag1 estimate at 0.043759 (s.e. 0.15898),
which is not significant, while the initial response s1 estimate 1.2873 (s.e. 0.19087)
and the scale parameter estimate 0.88018 (s.e. 0.12553) are highly significant.
There is also a big improvement in the log-likelihood over the model without s1
of

−2(−831.56731− (−794.75310)) = 73. 628

for 1 degree of freedom. This model has no time-constant covariates to be
confounded by the auxiliary model and suggests that depression is a zero-order
process.
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11.7 Modelling the initial conditions

There are several approximations that can be adopted: (1) use the same random
effect in the initial and subsequent responses, e.g. Crouchley and Davies (2001);
(2) use a one-factor decomposition for the initial and subsequent responses, e.g.
Heckman (1981a), Stewart (2007); (3) use different (but correlated) random
effects for the initial and subsequent responses; (4) embed the Wooldridge (2005)
approach in joint models for the initial and subsequent responses.

Same random effect in the initial and subsequent responses with a
common scale parameter

The likelihood for this model is

L
¡
γ1, γ, δ, φ1, φ, σ2u0 |y,x, z

¢
=

Y
j

+∞Z
−∞

g
¡
y1j | θ1j , φ1

¢ TY
i=2

g (yij | yi−1j , θij , φ) f (u0j | x, z) du0j ,

where the responses
yj = [y1j,y2j , y3j , ..., yTj ] ,

time-varying regressors
xj = [x1j ,x2,j,...,xTj ] ,

time-constant regressors
zj = [zj ] .

For the initial response

θ1j = γ100 +
PX
p=1

γ1p0xp1j +

QX
q=1

γ10qzqj + u0j ,

and for subsequent responses we have

θij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + δyi−1j + u0j , i = 2, ..., T.

To set this model up in Sabre, we combine the linear predictors by using dummy
variables so that for all i

θij = r1θ1j + r2θij , i = 2, ..., T,

r1 = 1, if i = 1, 0 otherwise,

r2 = 1, if i > 1, 0 otherwise,

where for all i
var (u0j) = σ2u0.
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For the binary and Poisson models, we have φ = 1 in g (yij | yi−1j, θij , φ) , for
the linear model, we have

φ = σ2ε1

for the initial response, and
φ = σ2ε

for subsequent responses.

11.7.1 Depression example

The joint model for the binary depression data depression.dta has a con-
stant for the initial response, a constant for the subsequent responses, dummy
variables for seasons 3 and 4 and the lagged response variable.

11.7.2 Data description for depression.dta

Number of observations: 3008
Number of level-2 cases: 752

11.7.3 Variables

ind: individual identifier
t: season (1,2,3,4)
t1: 1 if t=1, 0 otherwise
t2: 1 if t=2, 0 otherwise
t3: 1 if t=3, 0 otherwise
t4: 1 if t=4, 0 otherwise
s: 1 if the respondent is depressed, 0 otherwise
s1: baseline response
s_lag1: lag 1 response, -9 if missing
s_lag2: lag 2 response, -9 if missing (not used)
r: response position, 1 if baseline, 2 if subsequent response
r1: 1 if r=1, 0 otherwise
r2: 1 if r=2, 0 otherwise

In the depression example, the model for the initial response (indicator r1=1),
has only a constant, the model for the 3 subsequent responses (indicator r2=1)
has a constant, dummy variables for seasons 3 (r2_t3 ) and 4 (r2_t4), and the
lagged response variable (r2_lag1).

11.7.4 Sabre commands

log using depression3_s.log, replace
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ind t t1 t2 t3 t4 s s1 s_lag1 s_lag2 r r1 r2
1 1 1 0 0 0 0 0 -9 -9 1 1 0
1 2 0 1 0 0 0 0 0 -9 2 0 1
1 3 0 0 1 0 0 0 0 0 2 0 1
1 4 0 0 0 1 0 0 0 0 2 0 1
2 1 1 0 0 0 0 0 -9 -9 1 1 0
2 2 0 1 0 0 0 0 0 -9 2 0 1
2 3 0 0 1 0 0 0 0 0 2 0 1
2 4 0 0 0 1 0 0 0 0 2 0 1
3 1 1 0 0 0 0 0 -9 -9 1 1 0
3 2 0 1 0 0 0 0 0 -9 2 0 1
3 3 0 0 1 0 0 0 0 0 2 0 1
3 4 0 0 0 1 0 0 0 0 2 0 1
4 1 1 0 0 0 0 0 -9 -9 1 1 0
4 2 0 1 0 0 0 0 0 -9 2 0 1
4 3 0 0 1 0 0 0 0 0 2 0 1
4 4 0 0 0 1 0 0 0 0 2 0 1
5 1 1 0 0 0 0 0 -9 -9 1 1 0
5 2 0 1 0 0 0 0 0 -9 2 0 1
5 3 0 0 1 0 0 0 0 0 2 0 1
5 4 0 0 0 1 0 0 0 0 2 0 1
6 1 1 0 0 0 0 0 -9 -9 1 1 0
6 2 0 1 0 0 0 0 0 -9 2 0 1

Figure 11.2: First few lines of depression.dta
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set more off
use depression
sabre, data ind t t1 t2 t3 t4 s s1 s_lag1 s_lag2 r r1 r2
sabre ind t t1 t2 t3 t4 s s1 s_lag1 s_lag2 r r1 r2, read
sabre, case ind
sabre, yvar s
sabre, link p
sabre, trans r2_t3 r2 * t3
sabre, trans r2_t4 r2 * t4
sabre, trans r2_lag1 r2 * s_lag1
sabre, lfit r1 r2 r2_t3 r2_t4 r2_lag1
sabre, dis m
sabre, dis e
sabre, mass 24
sabre, fit r1 r2 r2_t3 r2_t4 r2_lag1
sabre, dis m
sabre, dis e
log close
clear
exit

11.7.5 Sabre log file

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
r1 -0.93769 0.53811E-01
r2 -1.2636 0.61874E-01
r2_t3 -0.13649 0.84561E-01
r2_t4 -0.15150E-02 0.82817E-01
r2_lag1 1.0480 0.79436E-01

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
r1 -1.3476 0.10026
r2 -1.4708 0.92548E-01
r2_t3 -0.20740 0.99001E-01
r2_t4 -0.85438E-01 0.97129E-01
r2_lag1 0.70228E-01 0.14048
scale 1.0372 0.10552

X-vars Y-var Case-var
________________________________________________
r1 response case.1
r2
r2_t3
r2_t4
r2_lag1
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Univariate model
Standard probit
Gaussian random effects

Number of observations = 3008
Number of cases = 752

X-var df = 5
Scale df = 1

Log likelihood = -1142.9749 on 3002 residual degrees of freedom

11.7.6 Discussion

The non-significant coefficient of r2_lag1 0.070228 (s.e. 0.14048) suggests that
there is no state dependence in these data, while the highly significant scale
coefficient 1.0372 (s.e. 0.10552) suggests heterogeneity.

11.8 Same random effect in models of the initial
and subsequent responses but with differ-
ent scale parameters

This model can be derived from a one-factor decomposition of the random ef-
fects for the initial and subsequent observations; for its use in this context, see
Heckman (1981a) and Stewart (2007). The likelihood for this model

L
¡
γ1, γ, δ, φ1, φ, σ21u0, σ

2
u0 |y,x, z

¢
,

is just like that for the common scale parameter model with the same random
effect for the initial and subsequent responses except that for i = 1, we have

var (u0j) = σ21u0

and for i > 1,

var (u0j) = σ2u0.

In binary or linear models, the scale parameter for the initial response is identi-
fied from the covariance of y1j and the yij , i > 1. Stewart (2007) has a different
parameterization for i = 1:

var (u0j) = λσ2u0

and for i > 1,

var (u0j) = σ2u0.
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As in the common scale parameter model we combine the linear predictors by
using dummy variables so that for all i

θij = r1θ1j + r2θij , i = 2, ..., T,

r1 = 1, if i = 1, 0 otherwise,

r2 = 1, if i > 1, 0 otherwise.

11.9 Depression example

As in the common scale parameter model, the joint model for the binary depres-
sion data depression.dta has a constant for the initial response, a constant for
the subsequent responses, dummy variables for seasons 3 and 4 and the lagged
response variable.

11.9.1 Sabre commands

log using depression4_s.log, replace
set more off
use depression
sabre, data ind t t1 t2 t3 t4 s s1 s_lag1 s_lag2 r r1 r2
sabre ind t t1 t2 t3 t4 s s1 s_lag1 s_lag2 r r1 r2, read
sabre, case ind
sabre, yvar s
sabre, rvar r
sabre, link p
sabre, trans r2_t3 r2 * t3
sabre, trans r2_t4 r2 * t4
sabre, trans r2_lag1 r2 * s_lag1
sabre, nvar 1
sabre, lfit r1 r2 r2_t3 r2_t4 r2_lag1
sabre, dis m
sabre, dis e
sabre, mass first=24 second=24
sabre, depend y
sabre, nvar 1
sabre, fit r1 r2 r2_t3 r2_t4 r2_lag1
sabre, dis m
sabre, dis e
log close
clear
exit

11.9.2 Sabre log file

Univariate model
Standard probit

Number of observations = 3008
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X-var df = 5

Log likelihood = -1179.8909 on 3003 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
r1 -0.93769 0.53811E-01
r2 -1.2636 0.61874E-01
r2_t3 -0.13649 0.84561E-01
r2_t4 -0.15150E-02 0.82817E-01
r2_lag1 1.0480 0.79436E-01

Univariate model
Dependent probit
Gaussian random effects

Number of observations = 3008
Number of cases = 752

X-var df = 5
Scale df = 2

Log likelihood = -1142.9355 on 3001 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
r1 -1.3248 0.12492
r2 -1.4846 0.10639
r2_t3 -0.21020 0.10004
r2_t4 -0.87882E-01 0.98018E-01
r2_lag1 0.50254E-01 0.15792
scale1 1.0021 0.15927
scale2 1.0652 0.14587

11.9.3 Discussion

This shows that the state dependence regressor r2_lag1 has estimate 0.050254
(s.e. 0.15792), which is not significant. It also shows that the scale parameters¡
σ21u0, σ

2
u0

¢
are nearly the same. The log-likelihood improvement of the model

with 2 scale parameters over that of the previous model with one scale parameter
is

−2(−1142.9749− (−1142.9355)) = 0.0788,

for 1 degree of freedom Thus the model with 1 scale parameter is to be preferred.
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11.10 Different random effects in models of the
initial and subsequent responses

The likelihood for this model is

L
¡
γ1, γ, δ, φ1, φ, σ2u0 , ρ|y,x, z

¢
=

Y
j

+∞Z
−∞

+∞Z
−∞

g
¡
y1j | θ1j , φ1

¢ IY
i=2

g (yij | yi−1j , θij , φ) f
¡
u10j , u

2
0j | x, z

¢
du10jdu

2
0j ,

where the responses
yj = [y1j,y2j , y3j , ..., yTj ] ,

time-varying regressors
xj = [x1j ,x2j,...,xTj ] ,

time-constant regressors
zj = [zj ] .

The main difference between this joint model and the previous single random
effect version is the use of different random effects for the initial and subsequent
responses. This implies that we need a bivariate integral to form the marginal
likelihood. For the initial response

θ1j = γ100 +
PX
p=1

γ1p0xp1j +

QX
q=1

γ10qzqj + u10j ,

and for subsequent responses we have

θij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + δyi−1j + u20j , , i = 2, ..., T.

The correlation between the random effects
¡
u10j , u

2
0j

¢
has parameter ρ, which

is identified from the covariance of y1j and the yij , i > 1. The scale parameter
for the initial response is not identified in the presence of ρ in the binary or
linear models, so in these models we hold it at the same value as that of the
subsequent responses.

As in all joint models, to set this model up in Sabre, we combine the linear
predictors by using dummy variables so that for all i

θij = r1θ1j + r2θij , i = 2, ..., T,

r1 = 1, if i = 1, 0 otherwise,

r2 = 1, if i > 1, 0 otherwise.

For the binary and Poisson models, we have φ = 1 in g (yij | yi−1j , θij , φ) . For
the linear model, we still have

φ = σ2ε1
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for the initial response, and
φ = σ2ε

for subsequent responses.

11.11 Depression example

As in the single random effect models, the joint model for the binary depression
data depression.dta has a constant for the initial response, a constant for
the subsequent responses, dummy variables for seasons 3 and 4 and the lagged
response variable.

11.11.1 Sabre commands

log using depression5_s.log, replace
set more off
use depression
sabre, data ind t t1 t2 t3 t4 s s1 s_lag1 s_lag2 r r1 r2
sabre ind t t1 t2 t3 t4 s s1 s_lag1 s_lag2 r r1 r2, read
sabre, case ind
sabre, yvar s
sabre, model b
sabre, rvar r
sabre, link first=p second=p
sabre, trans r2_t3 r2 * t3
sabre, trans r2_t4 r2 * t4
sabre, trans r2_lag1 r2 * s_lag1
sabre, nvar 1
sabre, lfit r1 r2 r2_t3 r2_t4 r2_lag1
sabre, dis m
sabre, dis e
sabre, mass 24
sabre, eqscale y
sabre, der1 y
sabre, nvar 1
sabre, fit r1 r2 r2_t3 r2_t4 r2_lag1
sabre, dis m
sabre, dis e
log close
clear
exit

11.11.2 Sabre log file

Standard probit/probit

Number of observations = 3008

X-var df = 5
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Log likelihood = -1179.8909 on 3003 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
r1 -0.93769 0.53811E-01
r2 -1.2636 0.61874E-01
r2_t3 -0.13649 0.84561E-01
r2_t4 -0.15150E-02 0.82817E-01
r2_lag1 1.0480 0.79436E-01

Correlated bivariate model

Standard probit/probit
Gaussian random effects

Number of observations = 3008
Number of cases = 752

X-var df = 5
Scale df = 2

Log likelihood = -1142.9355 on 3001 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
r1 -1.3672 0.12386
r2 -1.4846 0.10591
r2_t3 -0.21020 0.10033
r2_t4 -0.87881E-01 0.97890E-01
r2_lag1 0.50253E-01 0.15946
scale 1.0652 0.14362
corr 0.97091 0.10087

11.11.3 Discussion

Note that the log-likelihood is exactly the same as that for the previous model.
The scale2 parameter from the previous model has the same value as the scale
parameter of the current model. The lagged response r2_lag1 has an estimate
of 0.050313 (s.e. 0.15945), which is not significant. The correlation between
the random effects (corr) has estimate 0.97089 (s.e. 0.10093), which is very
close to 1 suggesting that the common random effects, zero-order, single scale
parameter model is to be preferred.
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11.12 Embedding theWooldridge (2005) approach
in joint models for the initial and subse-
quent responses

This extended model will help us to assess the value of the Wooldridge (2005)
approach in an empirical context. We can include the initial response in the
linear predictors of the subsequent responses of any of the joint models, but for
simplicity we will use the single random effect, single scale parameter model.

The likelihood for this model is

L
¡
γ1, γ, δ, φ1, φ, σ2u0 |y,x, z

p
¢
=

Y
j

+∞Z
−∞

g
¡
y1j | θ1j , φ1

¢ TY
i=2

g (yij | yi−1j , y1j,θij , φ) f (u0j | x, zp) du0j ,

where the responses
yj = [y1j,y2j , y3j , ..., yTj ] ,

time-varying regressors
xj = [x1j ,x2j,...,xTj ] ,

time-constant regressors
zj = [zj , y1j ] .

For the initial response

θ1j = γ100 +
PX
p=1

γ1p0xp1j +

QX
q=1

γ10qzqj + u0j,

and for subsequent responses we have

θij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + δyi−1j + κ1y1j + u0j , i = 2, ..., T,

as we have added κ1y1j to the linear predictor.

As with joint models, we combine the linear predictors by using dummy variables
so that for all i

θij = r1θ1j + r2θij , i = 2, ..., T,

r1 = 1, if i = 1, 0 otherwise,

r2 = 1, if i > 1, 0 otherwise,

where for all i
var (u0j) = σ2u0.

For the binary and Poisson models, we have φ = 1 in g (yij | yi−1j , θij , φ) , for
the linear model, we have

φ = σ2ε1
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for the initial response, and
φ = σ2ε

for subsequent responses.

11.13 Depression example

As in the single random effect models, the joint model for the binary depression
data depression.dta has a constant for the initial response, a constant for the
subsequent responses, dummy variables for seasons 3 and 4, the lagged response
variable and the initial response variable.

11.13.1 Sabre commands

log using depression6_s.log, replace
set more off
use depression
sabre, data ind t t1 t2 t3 t4 s s1 s_lag1 s_lag2 r r1 r2
sabre ind t t1 t2 t3 t4 s s1 s_lag1 s_lag2 r r1 r2, read
sabre, case ind
sabre, yvar s
sabre, link p
sabre, trans r2_t3 r2 * t3
sabre, trans r2_t4 r2 * t4
sabre, trans r2_lag1 r2 * s_lag1
sabre, trans r2_base r2 * s1
sabre, lfit r1 r2 r2_t3 r2_t4 r2_lag1 r2_base
sabre, dis m
sabre, dis e
sabre, mass 24
sabre, fit r1 r2 r2_t3 r2_t4 r2_lag1 r2_base
sabre, dis m
sabre, dis e
log close
clear
exit

11.13.2 Sabre log file

(Standard Homogenous Model)

Parameter Estimate Std. Err.
___________________________________________________
r1 -0.93769 0.53811E-01
r2 -1.3390 0.65010E-01
r2_t3 -0.12914 0.85893E-01
r2_t4 -0.70059E-02 0.84373E-01
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r2_lag1 0.69132 0.96958E-01
r2_s1 0.62535 0.93226E-01

(Random Effects Model)

Parameter Estimate Std. Err.
___________________________________________________
r1 -1.3632 0.16189
r2 -1.4741 0.97129E-01
r2_t3 -0.20869 0.99797E-01
r2_t4 -0.86541E-01 0.97774E-01
r2_lag1 0.61491E-01 0.15683
r2_s1 -0.33542E-01 0.26899
scale 1.0602 0.21274

X-vars Y-var Case-var
________________________________________________
r1 response case.1
r2
r2_t3
r2_t4
r2_lag1
r2_s1

Univariate model
Standard probit
Gaussian random effects

Number of observations = 3008
Number of cases = 752

X-var df = 6
Scale df = 1

Log likelihood = -1142.9670 on 3001 residual degrees of freedom

11.13.3 Discussion

This joint model has both the lagged response r2_lag1 estimate of 0.061490 (s.e.
0.15683) and the baseline/initial response effect r2_base estimate of -0.033544
(s.e. 0.26899) as being non-significant.

11.14 Other link functions

State dependence can also occur in Poisson and linear models. For linear model
examples, see Baltagi and Levin (1992) and Baltagi (2005). These data concern
the demand for cigarettes per capita by state for 46 American States.
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We have found first-order state dependence in the Poisson data of Hall et al.
(1984), Hall, Griliches and Hausman (1986). The data refer to the number of
patents awarded to 346 firms each year from 1975 to 1979.

11.15 Exercises

There are a range of exercises to accompany this chapter. The exercises FOL1,
FOL2, FOL3 and FOC2 are for binary responses. The exercises FOC4 and
FOC5 are for Poisson responses. These exercises show that the Wooldridge
(2005) approach works well for binary responses, but (in its simplest form) not
for Poisson data.
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Chapter 12

Incidental Parameters: An
Empirical Comparison of
Fixed Effects and Random
Effects Models

12.1 Introduction

The main objective of the random effects/multilevel modelling approach is the
estimation of the γ parameters in the presence of the random effects or inci-
dental parameters (in a 2-level model these are the individual specific random
effects u0j). This has been done by assuming that the incidental parameters are
Gaussian distributed, and by computing the expected behaviour of individuals
randomly sampled from this distribution (in other words, by integrating the
random effects out of the model). For the 2-level random effects generalised
linear mixed model we had the likelihood

L
¡
γ, φ, σ2u0 |y,x, z

¢
=
Y
j

Z Y
i

g (yij | θij , φ) f (u0j) du0j ,

where
g (yij | θij , φ) = exp {[yijθij − b (θij)] /φ+ c (yij , φ)} ,

θij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j ,

and

f (u0j) =
1√
2πσu0

exp

Ã
−

u20j
2σ2u0

!
.
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Random Effects Models

This approach will provide consistent estimates of the γ = [γ00, γp0, γ0q] so long
as in the true model, the u0j are independent of the covariates [x, z] .

A second approach, due to Andersen (1973), is to find a sufficient statistic for
the u0j and to estimate the γ from a likelihood conditional upon this sufficient
statistic. For the binary response model with a logit link, the formulation uses
the probability of the grouped responses conditional upon Sj =

P
i yij (for panel

data, this is the total number or count of events observed for that individual over
the observation period). The distribution of the data y1j , ..., yTj conditional
on Sj is free of u0j . The product of these conditional distributions provides
a likelihood whose maximum will provide a consistent estimator of γp0. The
γ00 and γ0q are conditioned out of the likelihood. The same approach can be
used with the Poisson model. When there is some form of state dependence or
endogeneity in the binary response model, the conditional likelihood approach
gives inconsistent estimates, see Crouchley and Pickles (1988).

There are several other related approaches. One involves factoring the likelihood
into two orthogonal parts, one for the structural parameters and another for the
incidental parameters, e.g. Cox and Reid (1987). Another related approach is to
estimate the u0j and some of the elements of γ by the usual maximum likelihood
procedures. For instance, with panel/clustered data, only the parameters on the
time/within cluster varying covariates (γp0) in the linear model are identified.

In a panel, the number of panel members is large and the period of observation
is short. As the number of panel members increases, so too does the number
of incidental parameters (u0j). This feature was called the "incidental parame-
ters problem" by Neyman and Scott (1948). For the linear model, with only
time/within cluster varying covariates, maximum likelihood gives consistent γp0
but biased u0j .

Abowd et al (2002) developed an algorithm for the the direct least squares
estimation of (γp0, u0j) in linear models on very large data sets. FEFIT is the
Sabre version of this algorithm. The estimates of u0j produced by direct least
squares are consistent as the cluster size or Tj →∞, see Hsiao (1986, section 3.2)
and Wooldridge (2002, Ch10). The number of dummy variables (u0j) that can
be directly estimated using conventional matrix manipulation in least squares
is limited by storage requirements, so FEFIT uses sparse matrix procedures.
FEFIT has been tested on some very large data sets (e.g. with over 1 million
fixed effects). FEFIT has been written in a way that enables it to use multiple
processors in parallel.

We start by reviewing the fixed effects (FE) treatment of the 2-level linear model
and show how to estimate this model in Sabre, we then compare the FE with
the random effects (RE) model. The Chapter ends with a discussion about the
3-level FE model.
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12.2 Fixed Effects Treatment of The 2-Level Lin-
ear Model

Using the notation of Chapter 3, the explanatory variables at the individual
level (level 1) are denoted by x1, · · · , xP , and those at the group level (level 2)
by z1, · · · , zQ. This leads to the following formula

yij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j + εij ,

where the regression parameters γp0 (p = 1, · · · , P ) and γ0q (q = 1, · · · , Q) are
for level-one and level-two explanatory variables, respectively. If we treat the
incidental parameters u0j as fixed effects or constants, then without additional
restrictions, the γ0q, γ00, and u0j are not separately identifiable or estimable.

If we absorb the zqj into the fixed effect, so that

yij = γ00 +
PX
p=1

γp0xpij + u+0j + εij ,

where

u+0j =

QX
q=1

γ0qzqj + u0j .

Then we can identify the fixed effects u+0j by introducing the restriction
P

u+0j =

0. The individual incidental parameter u+0j represents the deviation of the jth
individual from the common mean γ00. Another way to identify the u

+
0j is to

treat them as dummy variables and set one to zero, i.e. put it in the reference
group (alternatively drop the constant from the model). The fixed effect u+0j may
be correlated with the included explanatory variables xpij (unlike the random
effect version). We still assume that the residuals εij are mutually independent
and have zero means conditional on the explanatory variables. The population
variance of the level-one residuals εij is denoted by σ2ε .

We can form a mean version (over i) of the model for yij so that

yj = γ00 +
PX
p=1

γp0xpj +

QX
q=1

γ0qzqj + u0j + εj ,

where xpj =
P

xpij/Tj , yj =
P

yij/Tj , εj =
P

εij , zqj =
P

zqj/Tj and u0j =P
u0j/Tj . The mean version (over i) of the model still contains the original

constant, cluster or time constant covariates and the incidental parameter u0j .
The mean version (over i) of the model for yij , produces one observation for
each individual or cluster. The u0j are not identified in this model as they occur
only once in each cluster and are absorbed into the residual.
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If we take the mean model from the basic form we get what is called the de-
meaned model with clustered data or time-demeaned model with longitudinal
data, i.e. ¡

yij − yj
¢
=

PX
p=1

γp0 (xpij − xpj) + (εij − εj) .

This differenced form does not have a constant, any incidental parameters, or
group-specific (time-constant) covariates in its specification. This differenced or
demeaned form is often estimated using OLS.

The random effects and fixed effects models can lead to quite different infer-
ence about γp0. For example, Hausman (1978) found that using a fixed effects
estimator produced significantly different results from a random effects speci-
fication of a wage equation. Mundlak (1978a) suggested that, in the random
effects formulation, we approximate E (u0j | xpj) by a linear function, i.e.

u0j =
PX
p=1

γ∗p0xpj + ωoj ,

where ωoj ∼ N(0, σ2ω), see also Chamberlain (1980). So that

yij = γ00 +
PX
p=1

γ∗p0xpj +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + ω0j + εij .

Mundlak (1978) suggests that if we use this augmented GLMM, then the dif-
ference between the random and fixed effects specifications would disappear.
However, there is another explanation of why there could be differences between
the two formulations. Suppose we had the alternative augmented GLMM,

yij = γ00 +
PX
p=1

γ∗∗p0xpj +
PX
p=1

γ+p0 (xpij − xpj) +

QX
q=1

γ0qzqj + u0j + εij ,

which reduces to the original form if γ∗∗p0 = γ+p0. In this model, a change in the
average value of xpj has a different impact to differences from the average. The
mean form (over i) of the alternative augmented model gives

yj = γ00 +
PX
p=1

γ∗∗p0xpj +

QX
q=1

γ0qzqj + u0j + εj .

If we take this mean form (over i) from the alternative augmented model, then
we get the time-demeaned form,¡

yij − yj
¢
=

PX
p=1

γ+p0 (xpij − xpj) + (εij − εj) .

In this case, the mean and time-demeaned forms are estimating different things.

Hausman and Taylor (1981) show how to identify time-varying effects using a
fixed effects estimator and identify the time-constant effects using a random
effects estimator in the same regression. This specification is currently beyond
the scope of Sabre.
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12.2.1 Dummy Variable Specification of the Fixed Effects
Model

Hsiao (1986, section 3.2) shows that by using dummy variables for the incidental
parameters in a linear model with time-varying covariates, i.e.

yij =
PX
p=1

γp0xpij + u∗0j + εij ,

we can obtain the same estimates as those of the differenced model

¡
yij − yj

¢
=

PX
p=1

γp0 (xpij − xpj) + (εij − εj) .

However, the differenced model parameter estimates will have smaller standard
errors, unless the calculation of the means

¡
yj , xpj

¢
is taken into account. The

OLS estimates of the fixed effects are given by

bu∗0j = yj −
PX
p=1

γp0xpj .

Sabre has a procedure FEFIT which uses least squares to directly estimate the
dummy variable version of the incidental parameter model. One advantage of
the dummy variable form of the model is that it can be applied to the non
demeaned data when the level-2 nesting is broken, e.g. when pupils (level 1)
change class (level 2).

12.3 Empirical Comparison of 2-Level Fixed and
Random Effects Estimators

We now empirically compare the various ways of estimating a linear model
with incidental parameters. The data we use are a version of the National
Longitudinal Study of Youth (NLSY) as used in various Stata Manuals (to
illustrate the xt commands). The data are for young women who were aged
14-26 in 1968. The women were surveyed each year from 1970 to 1988, except
for 1974, 1976, 1979, 1981, 1984 and 1986. We have removed records with
missing values on the response (log wages) and explanatory variables. There
are 4132 women (idcode) with between 1 and 12 years of data on being in
waged employment (i.e. not in full-time education) and earning over $1/hour
and less than $700/hour. We are going to explore how the results change when
we use different estimators of the incidental parameters.



160
12. Incidental Parameters: An Empirical Comparison of Fixed Effects and

Random Effects Models

12.3.1 References

Stata Longitudinal/Panel Data, Reference Manual, Release 9, (2005), Stata
Press, StataCorp LP, College Station, Texas.

12.3.2 Data description for nlswork.dta

Number of observations: 28091
Number of level-2 cases: 4132

12.3.3 Variables

ln_wage: ln(wage/GNP deflator) in a particular year
black: 1 if woman is black, 0 otherwise
msp: 1 if woman is married and spouse is present, 0 otherwise
grade: years of schooling completed (0-18)
not_smsa: 1 if woman was living outside a standard metropolitan statistical
area (smsa), 0 otherwise
south: 1 if woman was living in the South, 0 otherwise
union: 1 if woman was a member of a trade union, 0 otherwise
tenure: job tenure in years (0-26)
age: respondent’s age
age2: age* age

idcode year birth_yr age race msp nev_mar grade collgrad not_smsa c_city south union ttl_exp tenure ln_wage black age2 ttl_exp2 tenure2
1 72 51 20 2 1 0 12 0 0 1 0 1 2.26 0.92 1.59 1 400 5.09 0.84
1 77 51 25 2 0 0 12 0 0 1 0 0 3.78 1.50 1.78 1 625 14.26 2.25
1 80 51 28 2 0 0 12 0 0 1 0 1 5.29 1.83 2.55 1 784 28.04 3.36
1 83 51 31 2 0 0 12 0 0 1 0 1 5.29 0.67 2.42 1 961 28.04 0.44
1 85 51 33 2 0 0 12 0 0 1 0 1 7.16 1.92 2.61 1 1089 51.27 3.67
1 87 51 35 2 0 0 12 0 0 0 0 1 8.99 3.92 2.54 1 1225 80.77 15.34
1 88 51 37 2 0 0 12 0 0 0 0 1 10.33 5.33 2.46 1 1369 106.78 28.44
2 71 51 19 2 1 0 12 0 0 1 0 0 0.71 0.25 1.36 1 361 0.51 0.06
2 77 51 25 2 1 0 12 0 0 1 0 1 3.21 2.67 1.73 1 625 10.31 7.11
2 78 51 26 2 1 0 12 0 0 1 0 1 4.21 3.67 1.69 1 676 17.74 13.44
2 80 51 28 2 1 0 12 0 0 1 0 1 6.10 5.58 1.73 1 784 37.16 31.17
2 82 51 30 2 1 0 12 0 0 1 0 1 7.67 7.67 1.81 1 900 58.78 58.78
2 83 51 31 2 1 0 12 0 0 1 0 1 8.58 8.58 1.86 1 961 73.67 73.67
2 85 51 33 2 0 0 12 0 0 1 0 1 10.18 1.83 1.79 1 1089 103.62 3.36
2 87 51 35 2 0 0 12 0 0 1 0 1 12.18 3.75 1.85 1 1225 148.34 14.06
2 88 51 37 2 0 0 12 0 0 1 0 1 13.62 5.25 1.86 1 1369 185.55 27.56
3 71 45 25 2 0 1 12 0 0 1 0 0 3.44 1.42 1.55 1 625 11.85 2.01
3 72 45 26 2 0 1 12 0 0 1 0 0 4.44 2.42 1.61 1 676 19.73 5.84
3 73 45 27 2 0 1 12 0 0 1 0 0 5.38 3.33 1.60 1 729 28.99 11.11
3 77 45 31 2 0 1 12 0 0 1 0 0 6.94 2.42 1.62 1 961 48.20 5.84

First few lines of nlswork.dta

The version of the data set that we use has the time-demeaned covariates (de-
noted vartilde, e.g. agetilde) included.
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Sabre Commands: homogeneous model

These commands open a log file, read the data and estimate a homogeneous
linear model with time-varying covariates and finally close the log file.

log using nlswork_fe_nolfit_s.log, replace
set mem 100m
set more off
use nlswork
#delimit ;
sabre, data idcode year birth_yr age race grade collgrad not_smsa c_city

south ttl_exp tenure ln_wage age2 ttl_exp2 tenure2 black
ln_wagebar ln_wagetilde gradebar gradetilde agebar agetilde
age2bar age2tilde ttl_expbar ttl_exptilde ttl_exp2bar
ttl_exp2tilde tenurebar tenuretilde tenure2bar tenure2tilde
blackbar blacktilde not_smsabar not_smsatilde southbar
southtilde;

sabre idcode year birth_yr age race grade collgrad not_smsa c_city south
ttl_exp tenure ln_wage age2 ttl_exp2 tenure2 black ln_wagebar
ln_wagetilde gradebar gradetilde agebar agetilde age2bar age2tilde
ttl_expbar ttl_exptilde ttl_exp2bar ttl_exp2tilde tenurebar
tenuretilde tenure2bar tenure2tilde blackbar blacktilde not_smsabar
not_smsatilde southbar southtilde,read;

#delimit cr
sabre, case idcode
sabre, yvar ln_wage
sabre, fam g
sabre, constant cons
#delimit ;
sabre, lfit age age2 ttl_exp ttl_exp2 tenure tenure2 not_smsa south grade

black cons;
#delimit cr
sabre, dis m
sabre, dis e
log close
clear
exit

Sabre Log File: Homogeneous Linear Model

Univariate model
Standard linear
Number of observations = 28091

X-var df = 11
Sigma df = 1

Log likelihood = -12523.347 on 28079 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
cons 0.24728 0.49332E-01
age 0.38598E-01 0.34670E-02
age2 -0.70818E-03 0.56322E-04
ttl_exp 0.21128E-01 0.23350E-02
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ttl_exp2 0.44733E-03 0.12461E-03
tenure 0.47369E-01 0.19626E-02
tenure2 -0.20270E-02 0.13380E-03
not_smsa -0.17205 0.51675E-02
south -0.10034 0.48938E-02
grade 0.62924E-01 0.10313E-02
black -0.69939E-01 0.53207E-02
sigma 0.37797

Sabre Commands: Time-Demeaned Data and Model

These are the extra commands needed to estimate a homogeneous linear model
with time-demeaned covariates.

sabre, yvar ln_wagetilde
#delimit ;
sabre, lfit agetilde age2tilde ttl_exptilde ttl_exp2tilde tenuretilde

tenure2tilde not_smsatilde southtilde gradetilde blacktilde;
#delimit cr
sabre, dis m
sabre, dis e

Sabre Log File: demeaned model

Univariate model
Standard linear

Number of observations = 28091

X-var df = 8
Sigma df = 1

Log likelihood = -2578.2531 on 28082 residual degrees of freedom

Parameter Estimate Std. Err.
____________________________________________________
agetilde 0.35999E-01 0.30903E-02
age2tilde -0.72299E-03 0.48601E-04
ttl_exptilde 0.33467E-01 0.27060E-02
ttl_exp2tilde 0.21627E-03 0.11657E-03
tenuretilde 0.35754E-01 0.16870E-02
tenure2tilde -0.19701E-02 0.11406E-03
not_smsatilde -0.89011E-01 0.86980E-02
southtilde -0.60631E-01 0.99759E-02
gradetilde 0.0000 ALIASED [E]
blacktilde 0.0000 ALIASED [E]
sigma 0.26527



12. Incidental Parameters: An Empirical Comparison of Fixed Effects and
Random Effects Models 163

Sabre Commands: Explicit Dummy Variables Model

These are the extra commands needed to estimate a homogeneous linear model
with explicit dummy variables for the incidental individual-specific parameters
(fidcode).

sabre, YVAR ln_wage
sabre, fam g
sabre, fac idcode fidcode
sabre, LFIT age age2 ttl_exp ttl_exp2 tenure tenure2 not_smsa south fidcode

Sabre Log File: Explicit Dummy Variables Model

Number of observations = 28091

X-var df = 4705
Sigma df = 1

Log likelihood = -2578.2532 on 23385 residual degrees of freedom

Parameter Estimate Std. Err.
___________________________________________________
age 0.35999E-01 0.33864E-02
age2 -0.72299E-03 0.53258E-04
ttl_exp 0.33467E-01 0.29653E-02
ttl_exp2 0.21627E-03 0.12774E-03
tenure 0.35754E-01 0.18487E-02
tenure2 -0.19701E-02 0.12499E-03
not_smsa -0.89011E-01 0.95316E-02
south -0.60631E-01 0.10932E-01
fidcode ( 1) 1.4233 0.96326E-01
fidcode ( 2) 0.97264 0.96648E-01
fidcode ( 3) 0.82992 0.89323E-01
fidcode ( 4) 1.3009 0.10013
fidcode ( 5) 1.1761 0.10011
fidcode ( 6) 1.0522 0.91844E-01
etc.

Discussion 1

As can be seen from the above log files, the model for the time-demeaned data
and the explicit dummy variable model with the non-time-demeaned data pro-
duce identical estimates. These are both slightly different to those from the
homogeneous model. If the incidental parameters are independent of the co-
variates, both sets of estimates will tend to the same limit as the number of
clusters increases.

The covariates gradetilde and blacktilde are dropped from the time-demeaned
model as these are time-constant covariates, which when demeaned have the
value zero throughout. The smaller standard errors of the demeaned model
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parameter estimates occur because the model-fitting procedure has not taken
into account the separate estimation of the means that were used to obtain the
time-demeaned values.

12.3.4 Implicit Fixed Effects Estimator

This procedure (FEFIT) uses dummy variables for each individual, and solves
the least squares normal equations using sparse matrix procedures. We call this
the implicit fixed effects estimator, as the dummy variables are not written out
as part of the display.

Sabre Commands: Implicit Fixed Effects Model

These are the extra commands needed to estimate and display the results for
the implicit fixed effects model.

sabre, yvar ln_wage
sabre, fefit age age2 ttl_exp ttl_exp2 tenure tenure2 not_smsa south
sabre, dis m
sabre, dis e

Sabre Log Files: Implicit Fixed Effects Model

Univariate model
Standard linear
Fixed effects

Number of observations = 28091
Number of cases = 4697

X-var df = 8

Parameter Estimate Std. Err.
___________________________________________________
age 0.35999E-01 0.33865E-02
age2 -0.72299E-03 0.53259E-04
ttl_exp 0.33467E-01 0.29654E-02
ttl_exp2 0.21627E-03 0.12774E-03
tenure 0.35754E-01 0.18487E-02
tenure2 -0.19701E-02 0.12499E-03
not_smsa -0.89011E-01 0.95318E-02
south -0.60631E-01 0.10932E-01
sigma 0.29070
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Discussion 2

This implicit dummy variable model does not have a constant. The estimates
and standard errors match those of the explicit dummy variables model. Clearly
with small data sets like the nlswage.dta, both the implicit and explicit dummy
variable models can be used. However, the implicit model estimator FEFIT was
3000 times faster on this data set than LFIT and required much less memory.

12.3.5 Random Effects Models

We now use Sabre to obtain the RE estimates for the various specifications.

The Classical Random Effects Model

yij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j + εij .

Sabre Commands: Classical Random Effects Model. These are the
extra commands needed to estimate the model with xpij + zqj , using 6-point
adaptive quadrature.

sabre, quad a
sabre, mass 6
#delimit ;
sabre, fit age age2 ttl_exp ttl_exp2 tenure tenure2 not_smsa south grade

black cons;
#delimit cr
sabre, dis m
sabre, dis e

Sabre Log File

Univariate model
Standard linear
Gaussian random effects

Number of observations = 28091
Number of cases = 4697

X-var df = 11
Sigma df = 1
Scale df = 1

Log likelihood = -8853.4259 on 28078 residual degrees of freedom

Parameter Estimate Std. Err.
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___________________________________________________
cons 0.23908 0.49190E-01
age 0.36853E-01 0.31226E-02
age2 -0.71316E-03 0.50070E-04
ttl_exp 0.28820E-01 0.24143E-02
ttl_exp2 0.30899E-03 0.11630E-03
tenure 0.39437E-01 0.17604E-02
tenure2 -0.20052E-02 0.11955E-03
not_smsa -0.13234 0.71322E-02
south -0.87560E-01 0.72143E-02
grade 0.64609E-01 0.17372E-02
black -0.53339E-01 0.97338E-02
sigma 0.29185 0.13520E-02
scale 0.24856 0.35017E-02

The Extended Random Effects Model 1

In this extension both the time means of the covariates (xpj) and the time-
varying covariates (xpij) , have their own parameters in the linear predictor,
i.e.

yij = γ00 +
PX
p=1

γ∗p0xpj +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + ω0j + εij .

Sabre Commands: Extended Random Effects Model 1. These are the
extra commands needed to estimate the model with xpj + xpij + zqj .

sabre, quad a
sabre, mass 6
#delimit ;
sabre, fit agebar age2bar ttl_expbar ttl_exp2bar tenurebar tenure2bar

not_smsabar southbar age age2 ttl_exp ttl_exp2 tenure tenure2
not_smsa south grade black cons;

#delimit cr
sabre, dis m
sabre, dis e

Sabre Log File

Univariate model
Standard linear
Gaussian random effects

Number of observations = 28091
Number of cases = 4697

X-var df = 19
Sigma df = 1
Scale df = 1

Log likelihood = -8774.6178 on 28070 residual degrees of freedom
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Parameter Estimate Std. Err.
___________________________________________________
cons 0.31033 0.12438
agebar -0.20870E-02 0.95809E-02
age2bar 0.10329E-03 0.15613E-03
ttl_expbar -0.19474E-01 0.63847E-02
ttl_exp2bar 0.49153E-03 0.34887E-03
tenurebar 0.31656E-01 0.62217E-02
tenure2bar -0.79062E-03 0.42178E-03
not_smsabar -0.98306E-01 0.14231E-01
southbar -0.40645E-01 0.14537E-01
age 0.35999E-01 0.33967E-02
age2 -0.72299E-03 0.53421E-04
ttl_exp 0.33467E-01 0.29744E-02
ttl_exp2 0.21627E-03 0.12813E-03
tenure 0.35754E-01 0.18543E-02
tenure2 -0.19701E-02 0.12537E-03
not_smsa -0.89011E-01 0.95607E-02
south -0.60631E-01 0.10965E-01
grade 0.61112E-01 0.19098E-02
black -0.60684E-01 0.98738E-02
sigma 0.29158 0.13489E-02
scale 0.24458 0.34461E-02

The Extended Random Effects Model 2

In this extension both the time means of the covariates (xpj) and the time-
demeaned covariates (xpij − xpj) have their own parameters in the linear pre-
dictor, i.e.

yij = γ00 +
PX
p=1

γ∗∗p0xpj +
PX
p=1

γ+p0 (xpij − xpj) +

QX
q=1

γ0qzqj + u0j + εij .

Sabre Commands: Extended Random Effects Model 2. These are the
extra commands needed to estimate the model with xpj + (xpij − xpj) + zqj .

sabre, quad a
sabre, mass 6
#delimit ;
sabre, fit agebar age2bar ttl_expbar ttl_exp2bar tenurebar tenure2bar

not_smsabar southbar agetilde age2tilde ttl_exptilde
ttl_exp2tilde tenuretilde tenure2tilde not_smsatilde southtilde
grade black cons;

#delimit cr
sabre, dis m
sabre, dis e

Sabre Log File
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Univariate model
Standard linear
Gaussian random effects

Number of observations = 28091
Number of cases = 4697

X-var df = 19
Sigma df = 1
Scale df = 1

Log likelihood = -8774.6178 on 28070 residual degrees of freedom

Parameter Estimate Std. Err.
____________________________________________________
cons 0.31033 0.12438
agebar 0.33912E-01 0.89586E-02
age2bar -0.61971E-03 0.14671E-03
ttl_expbar 0.13992E-01 0.56496E-02
ttl_exp2bar 0.70780E-03 0.32449E-03
tenurebar 0.67410E-01 0.59389E-02
tenure2bar -0.27607E-02 0.40271E-03
not_smsabar -0.18732 0.10542E-01
southbar -0.10128 0.95431E-02
agetilde 0.35999E-01 0.33967E-02
age2tilde -0.72299E-03 0.53421E-04
ttl_exptilde 0.33467E-01 0.29744E-02
ttl_exp2tilde 0.21627E-03 0.12813E-03
tenuretilde 0.35754E-01 0.18543E-02
tenure2tilde -0.19701E-02 0.12537E-03
not_smsatilde -0.89011E-01 0.95607E-02
southtilde -0.60631E-01 0.10965E-01
grade 0.61112E-01 0.19098E-02
black -0.60684E-01 0.98738E-02
sigma 0.29158 0.13489E-02
scale 0.24458 0.34461E-02

Discussion 3: Random effects models

The inference from the classical random effects model differs from that of the
two extended random effects models. The inference from the two extended
random effects models is the same. There is a significant difference between the
likelihoods of the classical and extended random effects models, namely

−2(−8853.4259− (−8774.6178)) = 157. 62,

for 28078 − 28070 = 8 degrees of freedom. Also several of the coefficients on
the xpj covariates are significant. This significance could be interpreted in two
alternative ways: (1) the omitted effects are significantly correlated with the
included time varying explanatory variables or (2) the explanatory variable time
means have different impacts to their time-demeaned values.
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12.3.6 Comparing 2-Level Fixed and RandomEffectsMod-
els

As the FE results and the extended RE models make similar inferences about
the effect of the time-varying covariates, it might seem that we can use either
of them for inference about time-varying covariates. However, in this empirical
comparison there were no internal covariates or state dependence effects, such
as duration or lagged response. When these sorts of endogenous covariate are
present, the correlation between the included and omitted effects will vary with
time. This variation will depend on the current duration in a survival model (or
the previous response in a first order model) and thus be difficult to capture in
a fixed effects model.

In the absence of endogenous covariates, we can establish if there is some sys-
tematic non stationarity in the correlation between the included and omitted
effects by dividing the observation window into blocks of responses and then
producing time means and time-demeaned variable effects for each block.

To explore whether the coefficients for the time-constant covariates are really
time-constant we can use dummy variables for different intervals of time and
include the interactions of these dummy variables with the time-constant ex-
planatory variables. However, it may not always be possible to account for
the correlation between included covariates and the incidental parameters with
simple linear functions of the means of the time-varying covariates, or by using
different parameters for different intervals of time.

12.4 Fixed Effects Treatment of The 3-Level Lin-
ear Model

As we saw in Chapter 7, it is not unusual to have 3-level data, for instance,
workers (level 2) in firms (level 3) employed over time (level 1). In the models
discussed in Chapter 7, the lower level data were nested in their higher level
units, and this simplified the analysis. However, with longitudinal data this
3-level nesting often gets broken, e.g. when workers change job and go to work
for a different firm. When this happens, there is no transformation like time
demeaning that will "sweep out" both the worker and firm fixed effects, see
Abowd, Kramarz and Margolis (1999).

By focussing on different re-arrangements of the data (worker, firm and spell),
different aspects of the model can be identified, e.g. the time-demeaned worker
data identifies the differences in the firm effects for the workers who move,
see Abowd, Creecy and Kramarz (2002). These different aspects of the model
can then be recombined using minimum distance estimators, see Andrews et al
(2006, 2008). Estimating the 3-level, linear model’s fixed effects is particularly
important for researchers who are interested in assessing their correlation with
other effects in the model, e.g. Abowd et al. (1999, 2002) wanted to establish
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the relationship between "high wage workers and high wage firms".

12.5 Exercises

There are two exercises to accompany this section, namely: FE1 and FE2.
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Appendix A

Installation, Command
Summary, Quadrature,
Estimation and Endogenous
Effects

A.1 Installation

For a Windows installation you will need to download the Sabre for Stata zip
file from the Sabre site, http://sabre.lancs.ac.uk/, and unzip the files (1)
sabre_in_stata.plugin, (2) Sabre.ado, to the sub directory personal of
the directory ado on your C drive, so that Stata can find them. The files in the
examples directory are the do and dta files for the examples and these need to
go into your Stata Data directory. We have also included do and dta files for
the exercises should you want them.

The file sabre_in_stata.plugin contains the C and FORTRAN code of the
plugin. The file Sabre.ado contains the translation between the code needed
by the plugin and the syntax we have used to delimit the sabre instructions in
this book.

We have written do files for all the examples in this book, these are invoked inter-
actively from within Stata using the Stata menu system (File>do), navigating
to the directory where these do files and dta files are located and highlighting
the do file we want to run.

To run the sabre_in_stata.plugin in batch mode with Stata on a Unix system
you will need to use the format

173
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stata --b do filename, where ’filename’ is the name of the do file

and not the format

stata < filename.do.

A.2 Sabre Commands

A.2.1 The Anatomy of a Sabre do file

There are various key elements to a Sabre do file. We will use the first few lines of
the Poisson Model Example C5 (prescribe.do) to illustrate this; prescribe.do
contains:

log using prescribe_s.log, replace

set more off

use racd

#delimit ;

sabre, data sex age agesq income levyplus freepoor freerepa illness actdays

hscore chcond1 chcond2 dvisits nondocco hospadmi hospdays medicine

prescrib nonpresc constant id;

sabre sex age agesq income levyplus freepoor freerepa illness actdays hscore

chcond1 chcond2 dvisits nondocco hospadmi hospdays medicine prescrib

nonpresc constant id, read;

#delimit cr

sabre, case id

sabre, yvar prescrib

sabre, family p

sabre, constant cons

#delimit ;

sabre, lfit sex age agesq income levyplus freepoor freerepa illness actdays

hscore chcond1 chcond2 cons;

#delimit cr

sabre, dis m

sabre, dis e

#delimit ;

sabre, fit sex age agesq income levyplus freepoor freerepa illness actdays

hscore chcond1 chcond2 cons;

#delimit cr

sabre, dis m

sabre, dis e

log close

clear

exit
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We will now break this down into various parts and explain what each part
does.

The following commands are Stata commands which open a log file called
prescribe_s.log, and load the data set racd.dat into Stata. Remember
that Sabre is a plugin and not actually part of Stata.

log using prescribe_s.log, replace

set more off

use racd

The following commands are used to transfer the variables we want to use in
the model fitting from Stata into Sabre

#delimit ;

sabre, data sex age agesq income levyplus freepoor freerepa illness actdays

hscore chcond1 chcond2 dvisits nondocco hospadmi hospdays medicine

prescrib nonpresc constant id;

sabre sex age agesq income levyplus freepoor freerepa illness actdays hscore

chcond1 chcond2 dvisits nondocco hospadmi hospdays medicine prescrib

nonpresc constant id, read;

#delimit cr

The command below tells Sabre what the level-2 (case, grouping variable) is
called, in this example it is id.

sabre, case id

The following commands tell Sabre what the response variable is called, in
this case its prescrib. The commands then tell Sabre which member of the
exponential family we want to use, in this case the p is for the Poisson model,.
The last command tells Sabre that that we want to include a constant (cons)
in the model.

sabre, yvar prescrib
sabre, family p
sabre, constant cons

The following commands (lfit) tell Sabre to estimate a non random effects
model (of the covariates sex-chcond2 and a constant (cons))..and then display
(dis) the model (m) and the estimates (e) of this fit.

#delimit ;
sabre, lfit sex age agesq income levyplus freepoor freerepa illness actdays
hscore chcond1 chcond2 cons;
#delimit cr
sabre, dis m
sabre, dis e



176
A. Installation, Command Summary, Quadrature, Estimation and Endogenous

Effects

The following commands (fit) tell Sabre to estimate a random effects model (of
the covariates sex-chcond2 and a constant (cons)).using the default quadra-
ture (normal) with the default number of mass points (12) and then display
(dis) the model (m) and the estimates (e) of this fit.

#delimit ;
sabre, fit sex age agesq income levyplus freepoor freerepa illness actdays
hscore chcond1 chcond2 cons;
#delimit cr
sabre, dis m
sabre, dis e

The following are Stata commands that close the log file, clear Stata’s memory
and exit Stata.

log close
clear
exit

A.2.2 Command Summary

The list of variable names is declared, and the dataset read into sabre using:

use filename(.dta)

sabre, data variable_list

sabre variable_list, read

Long lines in a .do file can be written using:

#delimit ;

sabre_in_stata command written on more than one line;

#delimit cr

For all model types, a homogeneous model is fitted using:

sabre, LFIT variable_list

The fitted model and the parameter estimates are displayed using:

sabre, DISPLAY m

sabre, DISPLAY e
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A.2.3 Random effects models

For all model types, a random effects model is fitted using:

sabre, FIT variable_list

Univariate models

sabre, CASE variable_name

sabre, YVARIATE variable_name

sabre, FAMILY b (default) or p or g

sabre, LINK l (default) or p or c if FAMILY b

sabre, ENDPOINT n (default) or l or r or b if FAMILY b

sabre, ENDPOINT n (default) or l if FAMILY p

(sabre, CONSTANT variable_name)

sabre, QUADRATURE g (default) or a

sabre, MASS positive integer (default is 12)

Univariate ordered response models sabre, CASE variable_name

sabre, YVARIATE variable_name

sabre, ORDERED y

sabre, LINK l (default) or p

sabre, QUADRATURE g (default) or a

sabre, MASS positive integer (default is 12)

Bivariate models

sabre, CASE variable_name

sabre, YVARIATE variable_name

sabre, MODEL b

sabre, RVARIATE variable_name

sabre, FAMILY FIRST = b (default) or p or g SECOND = b (default) or p or g
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sabre, LINK FIRST = l (default) or p or c if FAMILY FIRST = b

SECOND = l (default) or p or c if FAMILY SECOND = b

(sabre, CONSTANT FIRST = variable_name SECOND = variable_name)

sabre, NVAR positive integer

sabre, MASS FIRST = positive integer (default is 12)

SECOND = positive integer (default is 12)

Trivariate models

sabre, CASE variable_name

sabre, YVARIATE variable_name

sabre, MODEL t

sabre, RVARIATE variable_name

sabre, FAMILY FIRST = b (default) or p or g SECOND = b (default) or p or g

THIRD = b (default) or p or g

sabre, LINK FIRST = l (default) or p or c if FAMILY FIRST = b

SECOND = l (default) or p or c if FAMILY SECOND = b

THIRD = l (default) or p or c if FAMILY THIRD = b

(sabre, CONSTANT FIRST = variable_name SECOND = variable_name

THIRD = variable_name)

sabre, NVAR FIRST = positive integer SECOND = positive integer

sabre, QUADRATURE g (default) or a

sabre, MASS FIRST = positive integer (default is 12)

SECOND = positive integer (default is 12)

THIRD = positive integer (default is 12)

Univariate first order models

sabre, CASE variable_name

sabre, YVARIATE variable_name
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sabre, DEPEND y

sabre, RVARIATE variable_name

sabre, FAMILY b (default) or p or g

sabre, LINK l (default) or p or c if FAMILY b

(sabre, CONSTANT variable_name)

sabre, NVAR positive integer

sabre, QUADRATURE g (default) or a

sabre, MASS positive integer (default is 12)

Bivariate first order models

sabre, CASE variable_name

sabre, YVARIATE variable_name

sabre, MODEL b

sabre, RVARIATE variable_name

sabre, EQSCALE y

sabre, DER1 y

sabre, FAMILY FIRST = b (default) or p or g, SECOND = b (default) or p or g

sabre, LINK FIRST = l (default) or p or c if FAMILY FIRST = b

SECOND = l (default) or p or c if FAMILY SECOND = b

(sabre, CONSTANT FIRST = variable_name SECOND = variable_name)

sabre, NVAR positive integer

sabre, QUADRATURE g (default) or a

sabre, MASS FIRST = positive integer (default is 12)

SECOND = positive integer (default is 12)

Multilevel models

sabre, CASE FIRST = variable_name, SECOND = variable_name

sabre, YVARIATE variable_name
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sabre, FAMILY b (default) or p or g

sabre, LINK l (default) or p or c if FAMILY b

(sabre, CONSTANT variable_name)

sabre, MASS FIRST = positive integer (default is 12)

SECOND = positive integer (default is 12)

A.2.4 Fixed effects models

For all model types, a fixed effects model is fitted using:

sabre, FEFIT variable_list

Univariate models (linear model only)

sabre, CASE variable_name

sabre, YVARIATE variable_name

sabre, FAMILY g

(sabre, CONSTANT variable_name)

A.2.5 Other Sabre Commands

sabre, ALPHA real, positive; 0.01

sabre, APPROX integer, non-negative <= MAXIMU; 5

sabre, ARITHM character, ’f(ast)’ or ’a(ccurate)’; ’f’

sabre, CASE variable name(s) [FIRST=, SECOND=]; FIRST is first name listed in

DATA command

sabre, COMMEN text

sabre, CONSTA variable name(s) [FIRST=, SECOND=, THIRD=]

sabre, CONVER real, positive; 5e-5

sabre, CORREL character, ’y(es)’ or ’n(o)’; ’y’

sabre, CUTPOI reals, monotonically increasing
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sabre, DATA list of variable names

sabre, DEFAUL no argument

sabre, DELETE list of variable names

sabre, DEPEND character, ’y(es)’ or ’n(o)’; ’n’

sabre, DER1 character, ’y(es)’ or ’n(o)’; ’n’

sabre, DISPLA character, ’e(stimates)’ or ’l(imits)’ or ’m(odel)’ or

’s(ettings)’ or ’v(ariables)’

sabre, ENDPOI character, ’b(oth)’ or ’l(eft)’ or ’r(ight)’ or ’n(one)’; ’n’

sabre, EQSCAL character, ’y(es)’ or ’n(o)’; ’n’

sabre, FACTOR variable name, <space>, categorical variable name

sabre, FAMILY character(s), ’b(inomial)’ or ’g(aussian)’ or ’p(oisson)’

[FIRST=, SECOND=, THIRD=]; ’b’

sabre, FEFIT list of variable names

sabre, FIT list of variable names

sabre, FIXRHO no argument, or real, between -1 and +1

sabre, FIXSC1 no argument, or real, positive

sabre, FIXSCA no arguments, or reals, positive [FIRST=, SECOND=]

sabre, HELP no argument

sabre, HISTOG variable name (integer, between 2 and 11)

sabre, INITIA list of reals

sabre, INPUT filename

sabre, LFIT list of variable names

sabre, LINK character, ’l(ogit)’ or ’p(robit)’ or ’c(omplementary log-log)’

[FIRST=, SECOND=, THIRD=]; ’l’

sabre, LOOK list of variable names (integer, positive, <space>, integer,

positive)

sabre, MASS integer, 2,4,...,16,20,...,48,56,...,112,128,...,256; 12

sabre, MAXIMU integer, positive >= APPROX; 100
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sabre, MODEL character, ’u(univariate)’ or ’b(ivariate)’ or ’t(rivariate)’;

’u’

sabre, NVAR integer, positive [FIRST=, SECOND=]

sabre, OFFSET variable name

sabre, ORDERE character, ’n(o)’ or ’y(es)’; ’n’

sabre, OUTPUT filename; "sabre.log"

sabre, QUADRA character, ’g(aussian)’ or ’a(daptive)’; ’g’

sabre list of variable names (as in ’sabre, DATA’ command), READ

sabre, RESID filename; "sabre.res"

sabre, RESTAR no argument

sabre, RHO real, between -1 and +1 [FIRST=, SECOND=, THIRD=]

sabre, RVARIA variable name

sabre, SCALE real, positive [FIRST=, SECOND=, THIRD=]

sabre, SIGMA real, positive [FIRST=, SECOND=, THIRD=]

sabre, STOP no argument

sabre, TIME filename; "sabre.time"

sabre, TOLERA real, positive; 1e-6

sabre, TRACE filename; "sabre.trace"

sabre, TRANSF (various forms of syntax)

sabre, YVARIA variable name

A.3 Quadrature

We illustrate normal Gaussian quadrature and adaptive Gaussian quadrature
for the 2-level Generalised Linear Model (GLM). The ideas can be extended to
higher levels and to multivariate responses.

The 2 level GLM likelihood takes the form

L
¡
γ, φ, σ2u0 |y,x, z

¢
=
Y
j

+∞Z
−∞

Y
i

g (yij | θij , φ) f (u0j) du0j ,
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where
g (yij | θij , φ) = exp {[yijθij − b (θij)] /φ+ c (yij , φ)} ,

θij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j ,

and

f (u0j) =
1√
2πσu0

exp

Ã
−

u20j
2σ2u0

!
.

Sabre can evaluate the integrals in L
¡
γ, φ, σ2u0 |y,x, z

¢
for the multilevel GLM

model using either normal Gaussian or adaptive Gaussian quadrature.

A.3.1 Normal Gaussian Quadrature

Normal Gaussian quadrature or just Gaussian Quadrature uses a finite number
(C) of quadrature points consisting of weights (probabilities= pc) and locations
uc0. The values of pc and uc0 are available from standard normal tables, e.g.
Stroud and Secrest (1966). The approximation takes the form

L
¡
γ, φ, σ2u0 |y,x, z

¢
'
Y
j

c=CX
c=1

pc
Y
i

g
¡
yij | θcij , φ

¢
,

where

θcij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + σu0u
c
0,

c=CX
c=1

pc = 1.

The approximation works so long as
Y

i
g (yij | θij , φ) can be represented by a

polynomial in u0j which is of degree less than or equal to 2C − 1. However, it
is not a priori clear what value of C is required. Consequently, it is important
to check whether enough quadrature points have been used by comparing solu-
tions. Typically we start with a small C and increase it until covergence in the
likelihood occurs. When C is large enough, the addition of more quadrature
points wont improve the approximation.

Sabre can use: 2, (2),16; 16,(4),48; 48,(8),112; 112,(16),256 quadrature points
for each random effect. The notation a,(b),c means from a to c in steps of length
b. In Stata and gllamm the number of quadrature points must be between 4
and 195.
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A.3.2 Performance of Gaussian Quadrature

In serial Sabre (as distinct from parallel Sabre) the larger the number of quadra-
ture points used, the longer it takes to compute the likelihood. The time taken
is roughly proportional to the product of the number of quadrature points for
all the random effects in the multivariate multilevel GLM. For a bivariate 2-
level random intercept model there are two random effects at level-2 for each
response. If we use C = 16 quadrature points for each random effect, then the
total time will be approximately 162 = 256 times longer than a model without
any random effects (C = 1).

Rabe-Hesketh, et al (2005) noted that Gaussian quadrature (or Normal Quadra-
ture (NQ)) tends to work well with moderate cluster sizes as typically found
in panel data. However with large cluster sizes, which are common in grouped
cross-sectional data, the estimates from some algorithms can become biased.
This problem was articulated by Borjas and Sueyoshi (1994) and Lee (2000)
for probit models, by Albert and Follmann (2000) for Poisson models and by
Lesaffre and Spiessens (2001) for logit models.

Lee (2000) attributes the poor performance of quadrature to numerical under-
flow and develops an algorithm to overcome this problem.

Rabe-Hesketh et al (2005) noted that for probit models the Lee (2000) algorithm
works well in simulations with clusters as large as 100 when the intraclass cor-
relation is 0.3 but produces biased estimates when the correlation is increased
to 0.6. Rabe-Hesketh et al (2005) note that a likely reason for this is that for
large clusters and high intraclass correlations, the integrands of the cluster con-
tributions to the likelihood have very sharp peaks that may be located between
adjacent quadrature points.

There can be problems with underflow and overflow in Sabre when estimating
models. if this occurs, Sabre will give you a warning message and suggest you
use a more accurate form of arithmetic. In some contexts the undeflow can be
benign, for instance when we calculate

pc
Y

i
g
¡
yij | θcij , φ

¢
,

for the tails of the distribution, the contribution to the total can be so close
to zero, it will makes no real difference to the total (sum over c) and can be
ignored.

By default, Sabre uses standard double precision (FORTRAN 95, real*8) vari-
ables and arithmetic (sabre, ARITHM f(ast)). This is adequate for most ap-
plications but occasionally, some of the intermediate calculations of the log
likelihood logL

¡
γ, φ, σ2u0 |y,x, z

¢
, and its 1st and 2nd order derivatives can re-

quire the calculation of values which are beyond the range of double precision
numbers. This range is approximately 10 to the power -308 to 10 to the power
+308.

This range can be greatly extended by using the command sabre, ARITHM
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a(ccurate). In this case all calculations are performed using specially writ-
ten arithmetic code in which the exponent of the variable is stored separately
in a 4 byte integer. This extends the range of intermediate calculations to
approximately 10 to the power -2 billion to 10 to the power +2 billion. The
precision with which numbers are stored is the same for both ’f(ast)’ and
’a(ccurate)’, viz. about 15 decimal digits.

The greater range comes at the cost of increased run time, typically 15 times as
long as in fast arithmetic. However, particularly when using parallel Sabre on a
large number of processors, this may be a cost well worth paying as the problem
may not otherwise be soluble. Neither Stata nor SAS have an equivalent to
Sabre’s ’a(ccurate)’ procedure.

By default Sabre uses normal Gaussian quadrature (sabre, QUADRATURE g).
Rabe-Hesketh et al (2005) proposed the use of adaptive quadrature as an al-
ternative to normal quadrature (g), partly to avoid the problem of under-
flow/overflow that occurs in Normal Gaussian Quadrature. Adaptive Quadra-
ture will be performed by Sabre if you use the command sabre, QUADRATURE
a.

A.3.3 Adaptive Quadrature

Adaptive Quadrature works by adapting the quadrature locations of each in-
tegral inorder to place them where they are of most benefit to the quadrature
approximation, i.e. under the peaks. The adaptive quadrature weights and
locations depend on the parameters of the model. Between each step of the
maximization algorithm the weights and locations are shifted and rescaled. We
follow Skrondal and Rabe-Hesketh (2004), Rabe-Hesketh et al (2005) in illus-
trating AQ. If we adopt a Bayesain perpective, i.e assume that we know the
model parameters

¡
γ, φ, σ2u0

¢
, then the the 2 level GLM likelihood

L
¡
γ, φ, σ2u0 |y,x, z

¢
=
Y
j

+∞Z
−∞

Y
i

g (yij | θij , φ) f (u0j) du0j ,

has an integrand that is made up of the product of the joint probabilty of the
data given u0j and the prior density of u0j , i.e.Y

i

g (yij | θij , φ) f (u0j) .

Under the Bayesian central limit theorem (Carlin and Louis 2000, p122-124),
posterior densities are approximately normal. If μj, ϕ2j are the mean and vari-
ance of this posterior density f

¡
u0j ;μj , ϕ

2
j

¢
, then the ratioQ

i

g (yij | θij , φ) f (u0j)

f
¡
u0j ;μj , ϕ2j

¢ ,
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should be approximated by a lower degree polynomial than the orginal Gaussain
quadrature function. (If this is the case we will require fewer quadrature points
than normal Gaussian quadrature.) We can rewrite the orginal GQ integral as

fj
¡
γ, φ, σ2u0

¢
=

+∞Z
−∞

f
¡
u0j ;μj , ϕ

2
j

¢⎡⎣
Q
i
g (yij | θij , φ) f (u0j)

f
¡
u0j ;μj , ϕ2j

¢
⎤⎦ du0j ,

so that we the posterior density f
¡
u0j ;μj , ϕ

2
j

¢
becomes the weight function.

Let f (νj) denote a standard normal density, then by applying the change of
variable

νj =
(u0j − μj)

ϕj
,

to the elements of fj
¡
γ, φ, σ2u0

¢
, and applying the standard quadrature rule

(with weights pc and locations νc0), θ
c
ij becomes

θAQcij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + σu0 (ϕjν
c
0 + μj) ,

and

fj
¡
γ, φ, σ2u0

¢
'
X
c

pc

⎡⎢⎣
Q
i
g
³
yij | θAQcij , φ

´
f (ϕjν

c
0 + μj)

1
ϕj
√
2π
exp− (νc0)

2

⎤⎥⎦
=
X
c

πjc

"Y
i

g
³
yij | θAQcij , φ

´#
,

where

πjc = pc

⎡⎣ f (ϕjν
c
0 + μj)

1
ϕj
√
2π
exp− (νc0)

2

⎤⎦ .
Unfortunately, at each interation of the optimization procedure, the posterior
mean and variance

¡
μj, ϕ

2
j

¢
of each group are not apriori known. They can

however be obtained from an iterative procedure, see Naylor and Smith (1988).
Let us use the superscript k to denote values at the k th iteration. At the start
we have k = 1, and set μ0j = 0, and ϕ0j = 1, to give ϕ0jν

c
0 + μ0j and π0jc. The

posterior means and variances are then updated at each subsequent iteration
using

μkj =

P
c

¡
ϕk−1j νc0 + μk−1j

¢
πk−1jc

∙Q
i
g
³
yij | θAQc

k−1

ij , φk−1
´¸

fkj
¡
γk, φk, σ2ku0

¢ ,

¡
ϕkj
¢2
=

P
c

¡
ϕk−1j νc0 + μk−1j

¢2
πk−1jc

∙Q
i

g
³
yij | θAQc

k−1

ij , φk−1
´¸

fkj
¡
γk, φk, σ2ku0

¢ −
¡
μkj
¢2
,
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where

fkj

³
γk, φk, σ2

k

u0

´
'
X
c

πk−1jc

"Y
i

g
³
yij | θAQc

k−1

ij , φk−1
´#

.

At each k, we use μk−1j , and ϕk−1j in ϕk−1j νc0 + μk−1j and πkjc, to start the
convergence process that will give us μkj , and ϕ

k
j . As the optimization procedure

gets closer to the solution, there is less change in γk, φk, σ2
k

u0 , and consequently
in μkj , and ϕkj , so that convergence in this local adaptation occurs in 2-3 cycles.

It is our experience that underflow can still occur in Sabre with Adaptive
Quadrature (sabre, QUADRATURE a) but this can be resolved by using the com-
mand,.sabre, ARITHM a(ccurate). Algorithms for Adaptive Quadrature for
multilevel and multivariate random effects can also be developed along similar
lines, see Skrondal and Rabe-Hesketh (2004), Rabe-Hesketh et al (2005). Adap-
tive Quadrature has been deployed in Sabre for univariate, bivariate and trivari-
ate 2 level GLMs. However, it has not yet been deployed for 3 level models.

A.4 Estimation

Two forms of estimation are considered: (1) Random Effect Models, (2) Fixed
Effect Models.

A.4.1 Maximizing the Log Likelihood of Random Effect
Models

Sabre uses the Newton-Raphson algorithm to maximize the log-likelihood. The
Newton-Raphson algorithm is an iterative procedure. If we denote the parame-
ters

¡
π = γ, φ, σ2u0

¢
which maximize logL (π|y,x, z) , then a necessary condition

for this to occur is
∂ logL (π|y,x, z)

∂π
= 0.

If we let the values of the parameters at the nth iteration be denoted by πn.
Then a 1st order Taylor expansion about πn gives

∂ logL (π|y,x, z)
∂π

'
∙
∂ logL (π|y,x, z)

∂π

¸
π=πn

+

∙
∂2 logL (π|y,x, z)

∂π∂π0

¸
π=πn

(π − πn)

= g (πn) +H (πn) (π − πn) ,

where g (πn) is the gradient vector at πn and H (πn) is the Hessian. The process
is made iterative by writing

g (πn) +H (πn)
¡
πn+1−πn

¢
= 0,
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so that
πn+1 = πn − [H (πn)]−1 g (πn) .

When π has say k elements, (k > 1) , the computational effort required to
calculate logL (πn|y,x, z) once is much less than it is to calculate g (πn) for the
k elements of π and similarly for the (k− 1)k/2 distinct elements of H (πn) . So
we actually use

πn+1 = πn + s [−H (πn)]
−1

g (πn)

= πn + sd,

where s is a scalar (often called the step length). At each step (n) we try s = 1,
if

logL
¡
πn+1|y,x, z

¢
Â logL (πn|y,x, z) ,

then continue. While if

logL
¡
πn+1|y,x, z

¢
¹ logL (πn|y,x, z) ,

try s = 0.5, or, s = 0.25, untill

logL
¡
πn+1|y,x, z

¢
Â logL (πn|y,x, z) ,

then continue.

Sabre also has an option that allows you to use minus the outer product of the
gradient vectors, which we write as

H (πn) = −
X

j
gj (π

n) gj (π
n)
0
.

In the 2 level GLM gj (π
n) takes the form

gj (π
n) =

∂

"
log

c=CX
c=1

pc
Q
i
g
¡
yij | θcij , φ

¢#
πn

∂π
.

The outer product of the gradient vectors ensures that H (πn) is negative defi-
nite, this form of H (πn) can be useful when there are many local maxima and
minima of logL (π|y,x, z). This version of H (πn) gives the Fisher-Scoring al-
gorithm, see Berndt et al (1974), however, it can be very slow to converge when
compared to Newton-Raphson algorithm for estimating mutivariate multilevel
GLMs (evaluated using Gaussian quadrature).

It is important to acknowledge that many Gaussian quadrature loglikelihoods
have multiple local maxima, this makes it necessary to use different starting val-
ues, compare the solutions and establish the best. It is only the global maxima
in logL (π|y,x, z) that provides the maximum likelihood estimates.

Sabre uses analytic rather than numerical approximations to H (πn) and g (πn) .
This makes Sabre much faster than gllamm (Stata) which uses ml (Newton-
Raphson) with method d0 (no analytic derivaties required).
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A.4.2 Fixed Effect Linear Models

Using the notation of Chapter 3 and 12 for the linear model, the explanatory
variables at the individual level are denoted by x1, · · · , xP , and those at the
group level by z1, · · · , zQ, so that

yij = γ00 +
PX
p=1

γp0xpij +

QX
q=1

γ0qzqj + u0j + εij .

The regression parameters γp0 (p = 1, · · · , P ) and γ0q (q = 1, · · · , Q) are for
level-one and level-two explanatory variables, respectively. Groups with only one
individual have to be removed from the data before the data is processed, as the
dummy variables for groups of size 1 are not identified. This model is estimated
without a constant and time constant covariates, i.e. we set γ00 = γ0q = 0, and
treat all of the incidental parameters u0j as dummy variables. This is the Least
Squares Dummy Variable (LSDV) estimator, the estimates of u0j are biased but
consistent. A number of fixed effects estimators have been proposed, we use the
term LSDV for the explicit use of dummy variables. For some other papers on
the estimation of this model see e.g. Abowd et al (2002), Andrews et al (2005).

There can be too many groups in a data set to perform the conventional ma-
trix manipulations needed to estimate this model in the limited memory of
most desktop PCs. Sabre does not use any approximations or differencing
(demeaning), as it directly solves the least squares normal equations for the
model. Further, the group sizes do not need to be balanced. The algorithm still
works if the model includes level 3 (dummy variables) so long as they change
for some level 2 subjects. To solve the normal equations Sabre uses some of
the large sparse matrix algorithms of the Harwell Subroutine Library (HSL),
see http://www.cse.scitech.ac.uk/nag/hsl/. The Sabre estimator (sabre,
FEFIT variable_list) also goes parallel on multiprocessor systems.

A.4.3 The Relative Performance of Different Software Pack-
ages for Estimating Multilevel Random Effect Mod-
els

In this section we compare Sabre, Stata, gllamm (Stata), for estimating mul-
tivariate multilevel random effect models on Lancaster’s HPC. . In all com-
parisons we use the default or recommended starting values of the different
procedures. The HPC execution nodes are 124 Sun Fire X4100 servers with
two dual-core 2.4GHz Opteron CPUs, for a total of 4 CPUs per node. The
standard memory per node is 8G, with a few nodes offering 16G. Most nodes
also offer dedicated inter-processor communication in the form of SCore over
gigabit Ethernet, to support message passing (parallel) applications.
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Example Data Obs Vars Kb Stata gllamm Sabre(1) Sabre(8)
L7 filled 390432 94 367556 59hr 52' 3 months+ 34' 38" 7' 01"

lapsed 390432 94 367556 67hr 31' 3 months+ 29' 41" 6' 21"
L8 filled-lapsed 780864 261 2134413 n/a 3 years+ 54hr 29' 11hr 58'
L9 union-wage 37990 25 9683 n/a unexpected failure 18' 21" 2' 26"

Key

Sabre (8) Is Sabre running on 8 processors

n/a: Stata 9 can not estimate bivariate random effects models using quadrature

unexpected failure: the gllamm manual not does rule this bivariate model out, but gllamm crashed

just after starting

time+: indicates a lower CPU limit

Obs is the number of Observations in the data set

Vars is the number of explanatory variables in the model

Kb is the size of the raw data set in kilobytes.

The Example L7 (filled) is for a random effects complementary log log link
model of duration with a non parametric baseline hazard.(by week) until filled
of a job vacancy using micro data. Example L7 (lapsed) is the same, except
this time the duration (by week) is until the vacancy is lapsed, i.e. withdrawn
from the market by the firm. The Example L8 is the joint analysis of the filled
and lapsed data using a bivariate random effects competing risk model with
non parametric baseline hazards of each failure type. For further details on
these classes of model see Chapter 9, Event History Models. The data are from
Lancashire Careers Service over the period 1985-1992, for a copy of the data see
http://sabre.lancs.ac.uk/comparison3.html. We consider Examples L7
and L8 to be medium to large sized data sets.

The Example L9 is the NLS wage panel example of adult males from the Stata
manual. The model is a bivariate random effects model of wages (linear model)
and trade union membership (binary response) sequences, in which trade union
membership also has a direct effect on wages. For further details on this class
of model see Chapter 8, Multivariate 2 Level Generalised Linear Models. We
consider Example L9 to be a small data set.

It is not just the actual times that are important, as these will get shorter on
faster processors, though perhaps not fast enough to enable this type of analysis
on large data sets for many years to come. Researchers in the exploratory phase
of their work typically need quick but reliable estimates of the many different
versions of the model they are trying to fit.

For the relative times, this Table shows that serial Sabre(1) is over 100 times
faster than Stata and about 3000 times faster than gllamm on the univariate
data sets (L7). When we go parallel with Sabre we get another 5 fold increase
in speed on 8 processors. For the bivariate Example L8, we estimate that Sabre
(1) is at least 500 times faster than gllamm and that Sabre has a further 5
fold increase in speed on 8 processors. These are crude estimates as we had to
estimate the termination time for gllamm from the few iterations that it was
able to produce after 2 weeks running. Neither Stata (9) nor Stata (10) are able
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to estimate bivariate random effect models using quadrature

What is scientifically important, is that our substantive results change as the
modelling becomes more comprehensive. For instance, the bivariate analysis
(L8) not only provided a estimate of the correlation in the unobserved Random
effects of the different vacancy types but the inference on a range of explanatory
variables changed (compared to that of L7). In the NLS data the coefficient of
trade union membership in the wage equation is much smaller in the bivariate
model, when compared to that obtained when we assume that the sequence of
wages is independent from the sequence of trade union memberships. In other
words, the impact of trade union membership on wages is not as large as the
analsysis that assumes indpendence would suggest.

For further comparisons on other small and medium sized data sets and with
other software systems see http://sabre.lancs.ac.uk/comparison3.html.
The bigger the data set, or the more complex the model, the better the relative
performance of Sabre. In all comparisons the numerical properties of Sabre’s
estimates compare favourably with those of the alternatives and it has the best
overall computational speed. The speed produced by Sabre make it possible
to explore many more comprehensive model specifications in a reasonable time
period.

A.5 Endogenous and Exogenous Variables

In the social sciences, interest often focuses on the dynamics of social or economic
processes. Social science theory suggests that individual behaviour, choices or
outcomes of a process are directly influenced by (or are a function of) previous
behaviour, choices or outcomes. For instance, someone employed this week
is more likely to be in employment next week than someone who is currently
unemployed; someone who voted for a certain political party in the last elections
is more likely to vote for that party in the next elections than someone who did
not.

When analysing observational data in the social sciences, it is necessary to
distinguish between two different types of explanatory variable; those which
are exogenous (or external) to the process under study (for example age, sex,
social class and education in studies of voting behaviour), and those which are
endogenous . Endogenous variables have characteristics which in some way
relate to previous decisions, choices or outcomes of a process. For example,
in a study of voting behaviour previous vote, being a previous decision, is an
endogenous variable; in the study of migration, duration of stay since the last
residential move is endogenous as it relates to previous migration behaviour.

Endogenous variables may be seen as proxy variables for the many unmeasured
and unmeasurable factors which affect individual choice or behaviour and which
are therefore necessarily omitted from analyses. Thus voting choice may be seen
as a proxy for individual social, economic and psychological characteristics, while
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duration of stay in a locality is a proxy for all the unknown social and economic
factors which affect an individual’s propensity to move.

Endogenous variables create problems in statistical analyses, because being re-
lated to the outcomes of the process of interest they will, by definition, be a
function of the unobserved variables which govern the process. They will there-
fore be correlated with the random variation (or error structure) of the outcome.
This leads to an infringement of the basic regression model assumption that the
explanatory variables included in the model are independent of the error term.
The consequence of this violation is risk of substantial and systematic bias.

In the presence of endogenous variables the basic statistical models are not ro-
bust against the infringement of assumptions. Expressed technically, parameter
estimation is not consistent, ie. there is no guarantee that the parameter esti-
mates will approach their true values as the sample size increases. Consistency
is usually regarded as the minimum requirement of an acceptable estimation
procedure.

To avoid spurious relationships and misleading results, with endogenous vari-
ables it is essential to use longitudinal data and models in which there is control
for omitted variables. Longitudinal data, and in particular repeated measures
on individuals are important because they provide scope for controlling for in-
dividual specific variables omitted from the analysis.

The conventional approach to representing the effect of omitted variables is to
add an individual specific random term to the linear predictor, and to include
an explicit distribution for this random term in the model.

There is no single agreed terminology for models which include this random tem.
In econometrics the models are called random effect models; in epidemiology,
frailty models; and statisticians also refer to them as multilevel models, mixture
models or heterogeneous models. Models without random effects are some-
times called homogeneous models. An alternative terminology describes models
without random effects as marginal models and models with random effects
as conditional models. Marginal models correspond closely to the "population
averaged" formulations used in the General Estimating Equation literature.

It is important to note that when interest focuses on the causal relationship in
social processes inference can only be drawn by using longitudinal data and mod-
els in which there is control for unobserved (or residual) heterogeneity. Although
this approach does not overcome all the problems of cross-sectional analysis with
endogenous variables, there is ample evidence that it greatly improves inference.
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Appendix B

Data Preparation for the
Analysis of Panel and
Clustered Data

Sabre concentrates on procedures for estimating random and fixed effect models,
it only has a few commands for performing simple transformations. For instance
it does not have the facilities for handling data with missing values, reshaping
data, or manipulations like sort on a particular variable, so these activities are
best performed in more general statistical software packages.

These notes are not meant to be comprehensive as there are many sites that
provide an introduction to Stata and some of the commands we present here,
see for e.g. http://www.ats.ucla.edu/stat/stata/.

B.1 Creation of Dummy Variables

Johnson and Albert (1999) analysed data on the grading of the same essay by
five experts. Essays were graded on a scale of 1 to 10 with 10 being excellent.
In this exercise we use the subset of the data limited to the grades from graders
1 to 5 on 198 essays (essays.dta). The same data were used by Rabe-Hesketh
and Skrondal (2005, exercise 5.4).

B.1.1 References

Johnson, V. E., and Albert, J. H., (1999), Ordinal Data Modelling, Springer,
New York.
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Rabe-Hesketh, S., and Skrondal, A., (2005), Multilevel and Longitudinal Mod-
elling using Stata, Stata Press, Stata Corp, College Station, Texas.

B.1.2 Data description

Number of observations (rows): 990
Number of variables (columns): 11

B.1.3 Variables

essay: essay identifier (1,2,. . . ,198}
grader: grader identifier {1,2,3,4,5}
grade: essay grade {1,2,. . . ,10}
rating: essay rate {1,2,. . . ,10}, not used in this exercise
constant: 1 for all observations, not used in this exercise
wordlength: average word length
sqrtwords: square root of the number of words in the essay
commas: number of commas times 100 and divided by the number of words in
the essay
errors: percentage of spelling errors in the essay
prepos: percentage of prepositions in the essay
sentlength: average length of sentences in the essay

 essay grader grade rating cons wordlength sqrtwords commas errors prepos sentlength
1 1 8 8 1 4.76 15.46 5.60 5.55 8.00 19.53
2 1 7 7 1 4.24 9.06 3.60 1.27 9.50 16.38
3 1 2 2 1 4.09 16.19 1.10 2.61 14.00 18.43
4 1 5 5 1 4.36 7.55 1.80 1.81 0.00 14.65
5 1 7 7 1 4.31 9.64 2.30 0.00 10.00 18.72
6 1 8 10 1 4.51 11.92 1.30 0.00 11.10 20.00
7 1 5 5 1 3.94 8.54 2.80 0.00 13.80 23.75
8 1 2 2 1 4.04 7.21 0.00 0.00 5.90 25.43
9 1 5 5 1 4.24 7.68 5.30 1.72 14.00 28.25
10 1 7 7 1 4.31 8.83 1.30 1.27 14.70 19.28
11 1 5 5 1 4.31 8.77 0.00 1.30 8.00 10.72
12 1 7 7 1 4.69 8.89 3.80 1.31 8.00 13.38
13 1 5 5 1 4.10 8.66 0.00 1.40 5.50 23.71
14 1 6 6 1 4.80 9.69 3.20 7.44 10.90 15.19
15 1 3 3 1 4.06 10.10 1.00 4.08 13.00 24.72
16 1 6 6 1 4.33 13.82 2.10 1.61 11.60 24.05
17 1 5 5 1 4.13 7.55 3.60 0.00 9.00 28.74
18 1 4 4 1 4.07 6.93 2.10 0.00 4.30 15.38
19 1 2 2 1 4.98 6.40 5.20 7.74 12.70 12.74

The first few lines of essays.dta

The essays.dta dataset contains a variable grade which gives the grading of
essays on a scale of 1 to 10 (the highest grade given is actually 8 in this data set).
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If we want to create a grouping variables/binary indicator/dummy variable for
those essays that obtained a grade of 5 or over, as compared to those essays
that got less than 5 we would use the command

pass=1, if grade (5-10), 0 if grade (1-4)

we can also do this by using the commands

gen pass = 0
replace pass = 1 if grade >= 5

The variable grader which identifies different examiners and takes the values
1,2,3,4,5. To create dummy variables for examiners 2-5, we can use

gen grader2 = 0
replace grader2 = 1 if grader == 2
gen grader3 = 0
replace grader3 = 1 if grader == 3
gen grader4 = 0
replace grader4 = 1 if grader == 4
gen grader5 = 0
replace grader5 = 1 if grader == 5
save essays2, replace

 essay grader grade rating constant wordlength sqrtwords commas errors prepos sentlength pass grader2 grader3 grader4 grader5
1 3 8 8 1 4.76 15.46 5.60 5.55 8 19.53 1 0 1 0 0
1 1 8 8 1 4.76 15.46 5.60 5.55 8 19.53 1 0 0 0 0
1 4 8 8 1 4.76 15.46 5.60 5.55 8 19.53 1 0 0 1 0
1 2 6 8 1 4.76 15.46 5.60 5.55 8 19.53 1 1 0 0 0
1 5 5 8 1 4.76 15.46 5.60 5.55 8 19.53 1 0 0 0 1
2 2 5 7 1 4.24 9.06 3.60 1.27 9.5 16.38 1 1 0 0 0
2 4 5 7 1 4.24 9.06 3.60 1.27 9.5 16.38 1 0 0 1 0
2 3 3 7 1 4.24 9.06 3.60 1.27 9.5 16.38 0 0 1 0 0
2 1 7 7 1 4.24 9.06 3.60 1.27 9.5 16.38 1 0 0 0 0
2 5 3 7 1 4.24 9.06 3.60 1.27 9.5 16.38 0 0 0 0 1
3 5 1 2 1 4.09 16.19 1.10 2.61 14 18.43 0 0 0 0 1
3 1 2 2 1 4.09 16.19 1.10 2.61 14 18.43 0 0 0 0 0
3 4 1 2 1 4.09 16.19 1.10 2.61 14 18.43 0 0 0 1 0
3 2 1 2 1 4.09 16.19 1.10 2.61 14 18.43 0 1 0 0 0
3 3 1 2 1 4.09 16.19 1.10 2.61 14 18.43 0 0 1 0 0
4 4 5 5 1 4.36 7.55 1.80 1.81 0 14.65 1 0 0 1 0

The first few lines of the new data, essays2.dta

This data set can now be read directly into Sabre, see for example, Exercise C3.
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B.2 Sorting datasets

Garner and Raudenbush (1991) and Raudenbush and Bryk (2002) studied the
role of school and neighbourhood effects on educational attainment. The data
set they used (neighbourhood.dta) was for young people who left school be-
tween 1984 and 1986 from one Scottish Educational Authority. The same data
were used by Rabe-Hesketh and Skrondal (2005, exercise 2.2).

B.2.1 References

Garner, C. L., and Raudenbush, S. W., (1991), Neighbourhood effects on educa-
tional attainment: A multilevel analysis of the influence of pupil ability, family,
school and neighbourhood, Sociology of education, 64, 252-262.

Raudenbush, S. W., and Bryk, A. S., (2002), Hierarchical Linear Models, Sage,
Thousand Oaks, CA.

Rabe-Hesketh, S., and Skrondal, A., (2005), Multilevel and Longitudinal Mod-
elling using Stata, Stata Press, Stata Corp, College Station, Texas.

B.2.2 Data description

Number of observations (rows): 2310
Number of variables (columns): 12

B.2.3 Variables:

neighid: respondent’s neighbourhood identifier
schid: respondent’s schools identifier
attain: respondent’s combined end of school educational attainment as mea-
sured by grades from various exams
p7vrq: respondent’s verbal reasoning quotient as measured by a test at age
11-12 in primary school
p7read: respondent’s reading test score as measured by a test at age 11-12 in
primary school
dadocc: respondent’s father’s occupation
dadunemp: 1 if respondent’s father unemployed, 0 otherwise
daded: 1 if respondent’s father was in full time education after age 15, 0 other-
wise
momed: 1 if respondent’s mother was in full time education after age 15, 0 oth-
erwise
male: 1 if respondent is male, 0 otherwise
deprive: index of social deprivation for the local community in which the re-
spondent lived
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dummy: 1 to 4; representing collections of the schools or neighbourhoods

 neighid schid attain p7vrq p7read dadocc dadunemp daded momed male deprive dummy
675 0 0.74 21.97 12.13 2.32 0 0 0 1 -0.18 1
647 0 0.26 -7.03 -12.87 16.20 0 0 1 0 0.21 1
650 0 -1.33 -11.03 -31.87 -23.45 1 0 0 1 0.53 1
650 0 0.74 3.97 3.13 2.32 0 0 0 1 0.53 1
648 0 -0.13 -2.03 0.13 -3.45 0 0 0 0 0.19 1
648 0 0.56 -5.03 -0.87 -3.45 0 0 0 0 0.19 1
665 0 -0.36 -2.03 -1.87 16.20 0 0 0 1 0.38 1
661 0 0.74 8.97 3.13 2.32 0 0 0 0 -0.40 1
675 0 -0.36 -2.03 4.13 -3.45 0 1 1 1 -0.18 1
664 0 0.91 16.97 28.13 -3.45 0 0 1 0 -0.17 1
663 0 0.16 -4.03 -8.87 -9.09 0 0 0 1 -0.22 1
661 0 1.52 17.97 25.13 2.32 0 0 0 0 -0.40 1
665 0 0.26 5.97 7.13 -11.49 1 0 0 0 0.38 1
668 0 0.03 0.97 -11.87 2.32 0 0 0 0 -0.24 1
687 0 -0.13 6.97 12.13 -11.49 0 0 0 1 -0.05 1

The first few lines of neighborood.dta

The neighborhood.dta dataset could be used for random effects models at
both the school and neighborhood levels. To obtain separate datasets for each
level, with each one sorted on a particular variable (which will be specified as
the case variable within Sabre) we can use

use neighborhood
sort schid
save neighborhood1, replace
sort neighid
save neighborhood2, replace
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 neighid schid attain p7vrq p7read dadocc dadunemp daded momed male deprive dummy
26 20 0.56 2.97 6.13 2.32 0 0 0 0 -0.55 4
26 20 1.52 1.97 11.13 -9.09 0 0 0 0 -0.55 4
26 20 -1.33 -1.03 -0.87 -3.45 0 0 0 1 -0.55 4
26 20 1.52 17.97 17.13 16.20 0 0 0 1 -0.55 4
26 20 -1.33 -10.03 -27.87 -3.45 0 0 0 0 -0.55 4
27 20 -0.13 3.97 -0.87 -3.45 0 0 1 0 0.15 4
29 18 0.03 8.97 6.13 16.20 0 1 1 1 -0.08 4
29 20 -0.36 -8.03 -13.87 -3.45 0 0 0 0 -0.08 4
29 20 0.16 4.97 11.13 -11.49 0 0 0 1 -0.08 4
29 20 0.16 1.97 -4.87 -11.49 0 0 0 0 -0.08 4
29 20 0.74 -4.03 0.13 -3.45 0 0 0 1 -0.08 4
29 20 -1.33 -17.03 -23.87 -3.45 0 0 0 1 -0.08 4
29 20 -1.33 -8.03 -4.87 -3.45 0 0 0 0 -0.08 4
29 20 -1.33 -15.03 -25.87 -3.45 0 0 0 0 -0.08 4
29 20 0.56 -0.03 -5.87 -3.45 0 0 0 0 -0.08 4
30 20 -0.13 -0.03 -0.87 -11.49 0 0 0 1 -0.27 4
30 20 1.52 0.97 6.13 29.23 0 1 0 1 -0.27 4
31 18 2.42 2.97 5.13 16.20 0 1 1 1 0.01 4
31 20 -1.33 -16.03 -14.87 -3.45 0 0 0 1 0.01 4
32 20 0.26 0.97 7.13 2.32 0 0 0 1 -0.19 4
32 20 -0.36 -0.03 2.13 -23.45 0 0 0 0 -0.19 4
32 20 -0.36 -1.03 -7.87 -3.45 0 0 0 0 -0.19 4
32 18 0.03 7.97 8.13 -3.45 0 0 0 1 -0.19 4
32 20 0.03 6.97 5.13 -3.45 0 0 0 1 -0.19 4
32 20 0.74 -1.03 7.13 29.23 0 0 0 0 -0.19 4
33 20 -0.36 -4.03 -6.87 -3.45 0 0 0 0 0.54 4

The first few lines of neighborood2.dta

This data set can now be read directly into Sabre, see for example, Exercise C2.

B.3 Missing values

Raudenbush and Bhumirat (1992) analysed data on children repeating a grade
during their time at primary school. The data were from a national survey of
primary education in Thailand in 1988, we use a sub set of that data here.

B.3.1 Reference

Raudenbush, S.W., Bhumirat, C., 1992. The distribution of resources for pri-
mary education and its consequences for educational achievement in Thailand,
International Journal of Educational Research, 17, 143-164

B.3.2 Data description

Number of observations (rows): 8582
Number of variables (columns): 5
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B.3.3 Variables

schoolid: school identifier
sex: 1 if child is male, 0 otherwise
pped: 1 if the child had pre primary experience, 0 otherwise
repeat: 1 if the child repeated a grade during primary school, 0 otherwise
msesc: mean pupil socio economic status at the school level

 schoolid sex pped repeat msesc
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 0 1 0 .
10101 1 1 0 .
10101 1 1 0 .
10101 1 1 0 .
10101 1 1 0 .
10102 0 0 0 .
10102 0 1 0 .
10102 0 1 0 .
10102 0 1 0 .
10102 0 1 0 .
10102 0 1 0 .
10102 0 1 0 .
10102 0 1 0 .
10102 0 1 0 .
10102 0 1 0 .
10102 0 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10102 1 1 0 .
10103 0 0 0 0.88
10103 0 0 0 0.88
10103 0 1 0 0.88
10103 0 1 0 0.88

The first few lines of
thaieduc.dta

This shows that the thaieduc.dta dataset contains a variable msesc which has
missing values. For models which do not use msesc we can simply drop this
variable from the dataset as follows

use thaieduc
drop msesc
save thaieduc1, replace
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This dataset has 8,582 observations on 4 variables. For models which do use
msesc we need to drop all of the missing values. To do this, we can use

use thaieduc
drop if msesc ==.
save thaieduc2, replace

This dataset has 7,516 observations on 5 variables.

This data set can now be read directly into Sabre, see for example, Example
C3.

B.4 Grouped means

The data we use in this example are a sub-sample from the 1982 High School
and Beyond Survey (Raudenbush, Bryk, 2002), and include information on 7,185
students nested within 160 schools: 90 public and 70 Catholic. Sample sizes vary
from 14 to 67 students per school.

B.4.1 Reference

Raudenbush, S.W., Bryk, A.S., 2002, Heirarchical Linear Models, Thousand
Oaks, CA. Sage.

B.4.2 Data description

Number of observations (rows): 7185
Number of variables (columns): 15

B.4.3 Variables

school: school identifier
student: student identifier
minority: 1 if student is from an ethnic minority, 0 otherwise
gender: 1 if student is female, 0 otherwise
ses: a standardized scale constructed from variables measuring parental edu-
cation, occupation, and income, socio economic status
meanses: mean of the SES values for the students in this school
mathach: a measure of the students mathematics achievement
size: school enrolment
sector: 1 if school is from the Catholic sector, 0 otherwise
pracad: proportion of students in the academic track
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disclim: a scale measuring disciplinary climate
himnty:1 if more than 40% minority enrolment, 0 otherwise

 school student minority gender ses meanses cses mathach size sector pracad disclim himinty meansesBYcses sectorBYcses
1224 1 0 1 -1.53 -0.43 -1.10 5.88 842 0 0.35 1.60 0 0.47 0
1224 2 0 1 -0.59 -0.43 -0.16 19.71 842 0 0.35 1.60 0 0.07 0
1224 3 0 0 -0.53 -0.43 -0.10 20.35 842 0 0.35 1.60 0 0.04 0
1224 4 0 0 -0.67 -0.43 -0.24 8.78 842 0 0.35 1.60 0 0.10 0
1224 5 0 0 -0.16 -0.43 0.27 17.90 842 0 0.35 1.60 0 -0.12 0
1224 6 0 0 0.02 -0.43 0.45 4.58 842 0 0.35 1.60 0 -0.19 0
1224 7 0 1 -0.62 -0.43 -0.19 -2.83 842 0 0.35 1.60 0 0.08 0
1224 8 0 0 -1.00 -0.43 -0.57 0.52 842 0 0.35 1.60 0 0.24 0
1224 9 0 1 -0.89 -0.43 -0.46 1.53 842 0 0.35 1.60 0 0.20 0
1224 10 0 0 -0.46 -0.43 -0.03 21.52 842 0 0.35 1.60 0 0.01 0
1224 11 0 1 -1.45 -0.43 -1.02 9.48 842 0 0.35 1.60 0 0.44 0
1224 12 0 1 -0.66 -0.43 -0.23 16.06 842 0 0.35 1.60 0 0.10 0
1224 13 0 0 -0.47 -0.43 -0.04 21.18 842 0 0.35 1.60 0 0.02 0
1224 14 0 1 -0.99 -0.43 -0.56 20.18 842 0 0.35 1.60 0 0.24 0
1224 15 0 0 0.33 -0.43 0.76 20.35 842 0 0.35 1.60 0 -0.33 0
1224 16 0 1 -0.68 -0.43 -0.25 20.51 842 0 0.35 1.60 0 0.11 0
1224 17 0 0 -0.30 -0.43 0.13 19.34 842 0 0.35 1.60 0 -0.06 0
1224 18 1 0 -1.53 -0.43 -1.10 4.14 842 0 0.35 1.60 0 0.47 0
1224 19 0 1 0.04 -0.43 0.47 2.93 842 0 0.35 1.60 0 -0.20 0
1224 20 0 0 -0.08 -0.43 0.35 16.41 842 0 0.35 1.60 0 -0.15 0
1224 21 0 1 0.06 -0.43 0.49 13.65 842 0 0.35 1.60 0 -0.21 0
1224 22 0 1 -0.13 -0.43 0.30 6.56 842 0 0.35 1.60 0 -0.13 0
1224 23 0 1 0.47 -0.43 0.90 9.65 842 0 0.35 1.60 0 -0.39 0

The first few lines of hsb.dta

The hsb.dta dataset contains a variable ses for each student and the variable
meanses which is the mean of the SES values for the students in this school. If
this school level variable had not been made available with the data set it would
need to be created. To create the mean value of ’ses’ in Stata for each school
based on the students in the sample, we would use the commands

sort school
by school: egen meanses2 = mean(ses)

This data set can be used in Sabre, see for example, Examples C1 and C2..

B.5 Reshaping data

Dunn (1992) reported data for the 12-item version of Goldberg’s (1972) Gen-
eral Health Questionnaire for psychological distress. The questionnaire was
completed by 12 students on 2 dates, 3 days apart. The data are repeated in
the table below, the same data were used by Rabe-Hesketh and Skrondal (2005,
exercise 1.2).

B.5.1 Data description

Number of observations (rows): 12
Number of variables (columns): 3
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B.5.2 Variables

student: student identifier {1,2,. . . ,12}
ghq1: psychological distress score at occasion 1
ghq2: psychological distress score at occasion 2

 student ghq1 ghq2
1 12 12
2 8 7
3 22 24
4 10 14
5 10 8
6 6 4
7 8 5
8 4 6
9 14 14
10 6 5
11 2 5
12 22 16

The data (ghq.dta)

The ghq.dta dataset contains variables ghq1 and ghq2 giving the psychological
distress score for students on two separate occasions. To reshape the data from
wide into long format and create a single score variable ghq, we can use

reshape long ghq, i(student) j(r)
tab r, gen(r)
sort student r
rename r1 dg1
rename r2 dg2
save ghq2, replace

This also creates a response indicator variable r, the associated dummy variables
dg1 and dg2 and saves the file ghq2.dta.

B.5.3 Variables

r: response occasion 1, 2
student: student identifier {1,2,. . . ,12}
ghq: psychological distress score at occasion
dg1: 1, if the response occasion is 1, 0 otherwise
dg2: 1, if the response occasion is 2, 0 otherwise

The data set was saved as ghq2.dta
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 r student ghq dg1 dg2
1 1 12 1 0
2 1 12 0 1
1 2 8 1 0
2 2 7 0 1
1 3 22 1 0
2 3 24 0 1
1 4 10 1 0
2 4 14 0 1
1 5 10 1 0
2 5 8 0 1
1 6 6 1 0
2 6 4 0 1
1 7 8 1 0
2 7 5 0 1
1 8 4 1 0
2 8 6 0 1
1 9 14 1 0
2 9 14 0 1
1 10 6 1 0
2 10 5 0 1
1 11 2 1 0
2 11 5 0 1
1 12 22 1 0
2 12 16 0 1

ghq2.dta

This data set can now be read directly into Sabre, see for example Exercise L1.

B.6 Reshaping a data set with a baseline re-
sponse

In this example we illustrate how to stack a Stata data set (respiratory.dta),
which comes with time constant covariates, and a baseline response. We shall
suppose that you want to model the baseline jointly with the subsequent re-
sponses.

Koch et al (1989) analysed the clinical trial data from 2 centres that com-
pared two groups for respiratory illness. Eligible patients were randomised to
treatment or placebo groups at each centre. The respiratory status (ordered
response) of each patient prior to randomisation and at 4 later visits to the
clinic was determined.
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The number of young patients in the sample is 110. The version of the data
set (respiratory.dat) we use was also used by Rabe-Hesketh and Skrondal (2005,
exercise 5.1).

B.6.1 References

Koch, G. G., Car, G. J., Amara, A., Stokes, M. E., and Uryniak, T. J., (1989),
Categorical data analysis. In StateBerry, D., A., Statistical Methodology in the
Pharmaceutical Sciences, pp 389-473, Marcel Dekker, New York.

Rabe-Hesketh, S., and Skrondal, A., (2005), Multilevel and Longitudinal Mod-
elling using Stata, Stata Press, Stata Corp, College Station, Texas.

B.6.2 Data description

Number of observations (rows): 110
Number of variables (columns): 10

B.6.3 Variables:

center: Centre (1,2)
drug: 1 if patient was allocated to the treatment group, 0 otherwise
male: 1 if patient was male, 0 otherwise
age: patient’s age
bl: patient’s respiratory status prior to randomisation
v1: patient’s respiratory status at visit 1 (0: terrible; 1: poor; 2: fair; 3: good;
4: excellent)
v2: patient’s respiratory status at visit 2 (0: terrible; 1: poor; 2: fair; 3: good;
4: excellent)
v3: patient’s respiratory status at visit 3 (0: terrible; 1: poor; 2: fair; 3: good;
4: excellent)
v4: patient’s respiratory status at visit 4 (0: terrible; 1: poor; 2: fair; 3: good;
4: excellent)
patient: Patient identifier (1,2,. . . ,110)
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 center drug male age bl v1 v2 v3 v4 patient
1 1 0 32 1 2 2 4 2 1
1 1 0 47 2 2 3 4 4 2
1 1 1 11 4 4 4 4 2 3
1 1 1 14 2 3 3 3 2 4
1 1 1 15 0 2 3 3 3 5
1 1 1 20 3 3 2 3 1 6
1 1 1 22 1 2 2 2 3 7
1 1 1 22 2 1 3 4 4 8
1 1 1 23 3 3 4 4 3 9
1 1 1 23 2 3 4 4 4 10
1 1 1 25 2 3 3 2 3 11
1 1 1 26 1 2 2 3 2 12
1 1 1 26 2 2 2 2 2 13
1 1 1 26 2 4 1 4 2 14
1 1 1 28 1 2 2 1 2 15
1 1 1 28 0 0 1 2 1 16
1 1 1 30 3 3 4 4 2 17
1 1 1 30 3 4 4 4 3 18
1 1 1 31 1 2 3 1 1 19
1 1 1 31 3 3 4 4 4 20
1 1 1 31 0 2 3 2 1 21
1 1 1 32 3 4 4 3 3 22
1 1 1 43 1 1 2 1 1 23
1 1 1 46 4 3 4 3 4 24

The first few lines of respiratory.dta

The response variables bl, v1, v2, v3, v4 need to be stacked as a single
column

The data is stacked by generating new variables y1-y5 representing the out-
comes (baseline and 4 visits), indexing each observation as ij and then re-
shaping the data from wide to long format. The separate outcomes are thus
converted into a single outcome variable y. A new variable r is also generated
which indexes the responses and this can be converted into dummy variables
r1-r5 by use of the ’tab r, gen(r)’ command. The data is sorted by individ-
ual, response and observation index. The response indicator is used to generate
new baseline and trend covariates from the original baseline measure. Finally,
the new data is saved.

We also create a dummy variable bld=1 if status is from pre-randomisation
and a linear trend variable, called trend =m if status is from vm, m=1,2,3,4.
Further we create the variable base=bl for each row of post treatment data, 0
for the pre-randomisation data.
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B.6.4 Stata Commands

use respiratory
gen y1 = bl
gen y2 = v1
gen y3 = v2
gen y4 = v3
gen y5 = v4
reshape long y, i(patient) j(r)
tab r, gen(r)
sort patient r
generate status=y+1
gen bld = r1
gen trend = r-1
gen base = 0
replace base = bl if r >= 2
save respiratory2, replace

The command generate status=y+1 is needed as the ordered response model
command in Sabre only work on response variables that use 1 for label of the
1st category.

 r center drug male age bl v1 v2 v3 v4 patient status r1 r2 r3 r4 r5 bld trend base
1 1 1 0 32 1 2 2 4 2 1 2 1 0 0 0 0 1 0 0
2 1 1 0 32 1 2 2 4 2 1 3 0 1 0 0 0 0 1 1
3 1 1 0 32 1 2 2 4 2 1 3 0 0 1 0 0 0 2 1
4 1 1 0 32 1 2 2 4 2 1 5 0 0 0 1 0 0 3 1
5 1 1 0 32 1 2 2 4 2 1 3 0 0 0 0 1 0 4 1
1 1 1 0 47 2 2 3 4 4 2 3 1 0 0 0 0 1 0 0
2 1 1 0 47 2 2 3 4 4 2 3 0 1 0 0 0 0 1 2
3 1 1 0 47 2 2 3 4 4 2 4 0 0 1 0 0 0 2 2
4 1 1 0 47 2 2 3 4 4 2 5 0 0 0 1 0 0 3 2
5 1 1 0 47 2 2 3 4 4 2 5 0 0 0 0 1 0 4 2
1 1 1 1 11 4 4 4 4 2 3 5 1 0 0 0 0 1 0 0
2 1 1 1 11 4 4 4 4 2 3 5 0 1 0 0 0 0 1 4
3 1 1 1 11 4 4 4 4 2 3 5 0 0 1 0 0 0 2 4
4 1 1 1 11 4 4 4 4 2 3 5 0 0 0 1 0 0 3 4
5 1 1 1 11 4 4 4 4 2 3 3 0 0 0 0 1 0 4 4
1 1 1 1 14 2 3 3 3 2 4 3 1 0 0 0 0 1 0 0
2 1 1 1 14 2 3 3 3 2 4 4 0 1 0 0 0 0 1 2
3 1 1 1 14 2 3 3 3 2 4 4 0 0 1 0 0 0 2 2
4 1 1 1 14 2 3 3 3 2 4 4 0 0 0 1 0 0 3 2
5 1 1 1 14 2 3 3 3 2 4 3 0 0 0 0 1 0 4 2
1 1 1 1 15 0 2 3 3 3 5 1 1 0 0 0 0 1 0 0
2 1 1 1 15 0 2 3 3 3 5 3 0 1 0 0 0 0 1 0
3 1 1 1 15 0 2 3 3 3 5 4 0 0 1 0 0 0 2 0
4 1 1 1 15 0 2 3 3 3 5 4 0 0 0 1 0 0 3 0
5 1 1 1 15 0 2 3 3 3 5 4 0 0 0 0 1 0 4 0
1 1 1 1 20 3 3 2 3 1 6 4 1 0 0 0 0 1 0 0

The first few lines of the resulting data set, respiratory2.dta
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This data set can now be read directly into Sabre, see for example Exercise L6.

B.7 Creating Data Sets for Bivariate Models

Vella and Verbeek (1998) analysed the male data from the Youth Sample of
the US National Longitudinal Survey for the period 1980-1987. The number of
young males in the sample is 545. The version of the data set (wagepan.dta)
we use was obtained from Wooldridge (2002). The same data were used for
modelling the wages and for separately modelling trade union membership by
Rabe-Hesketh and Skrondal (2005, exercises 2.7 and 4.7). We start by looking
at the data set (wagepan.dta) in a form appropriate for response panel models
of log(wage) or union membership.

B.7.1 Data description

Number of observations (rows): 4360
Number of variables (columns): 44

B.7.2 Variables

nr: person identifier
year: 1980 to 1987
black: 1 if respondent is black, 0 otherwise
exper: labour market experience (age-6-educ)
hisp: 1 if respondent is Hispanic, 0 otherwise
poorhlth: 1 if respondent has a health disability, 0 otherwise
married: 1 if respondent is married, 0 otherwise
nrthcen: 1 if respondent lives in the Northern Central part of the US, 0 other-
wise
nrtheast: 1 if respondent lives in the North East part of the US, 0 otherwise
rur: 1 if respondent lives in a rural area, 0 otherwise
south: 1 if respondent lives in the South of the US, 0 otherwise
educ: years of schooling
union: 1 if the respondent is a member of a trade union, 0 otherwise
lwage: log of hourly wage in US dollars
d8m:1 if the year is 198m, 0 otherwise, m=1,. . . ,7
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 nr year agric black bus construc ent exper fin hisp
13 1980 0 0 1 0 0 1 0 0
13 1981 0 0 0 0 0 2 0 0
13 1982 0 0 1 0 0 3 0 0
13 1983 0 0 1 0 0 4 0 0
13 1984 0 0 0 0 0 5 0 0
13 1985 0 0 1 0 0 6 0 0
13 1986 0 0 1 0 0 7 0 0
13 1987 0 0 1 0 0 8 0 0
17 1980 0 0 0 0 0 4 0 0
17 1981 0 0 0 0 0 5 0 0
17 1982 0 0 0 0 0 6 0 0
17 1983 0 0 0 0 0 7 0 0
17 1984 0 0 0 0 0 8 0 0
17 1985 0 0 0 1 0 9 0 0
17 1986 0 0 0 1 0 10 0 0
17 1987 0 0 0 1 0 11 0 0
18 1980 0 0 0 0 0 4 0 0
18 1981 0 0 0 0 0 5 0 0
18 1982 0 0 0 0 0 6 0 0
18 1983 0 0 0 0 0 7 0 0
18 1984 0 0 0 0 0 8 0 0

The first few rows and columns of wagepan.dta

The wagepan.dta dataset contains response variables union and lwage for use
in univariate models of union membership and log wages respectively. To create
a dataset suitable for a bivariate model of union membership and log wages, we
can use

gen y1 = union
gen y2 = lwage
gen ij = _n
reshape long y, i(ij) j(r)
tab r, gen(r)
sort nr r ij
save union-wage, replace

This creates a single response variable y, a response indicator r and associated
dummy variables r1 and r2. The dataset is sorted by individual nr, response
indicator r and observation index ij.
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 ij r nr year agric black bus construc ent exper fin hisp poorhlth hours manuf married min nrthcen nrtheast occ1 occ2 occ3 occ4 occ5
1 1 13 1980 0 0 1 0 0 1 0 0 0 2672 0 0 0 0 1 0 0 0 0 0
2 1 13 1981 0 0 0 0 0 2 0 0 0 2320 0 0 0 0 1 0 0 0 0 0
3 1 13 1982 0 0 1 0 0 3 0 0 0 2940 0 0 0 0 1 0 0 0 0 0
4 1 13 1983 0 0 1 0 0 4 0 0 0 2960 0 0 0 0 1 0 0 0 0 0
5 1 13 1984 0 0 0 0 0 5 0 0 0 3071 0 0 0 0 1 0 0 0 0 1
6 1 13 1985 0 0 1 0 0 6 0 0 0 2864 0 0 0 0 1 0 1 0 0 0
7 1 13 1986 0 0 1 0 0 7 0 0 0 2994 0 0 0 0 1 0 1 0 0 0
8 1 13 1987 0 0 1 0 0 8 0 0 0 2640 0 0 0 0 1 0 1 0 0 0
1 2 13 1980 0 0 1 0 0 1 0 0 0 2672 0 0 0 0 1 0 0 0 0 0
2 2 13 1981 0 0 0 0 0 2 0 0 0 2320 0 0 0 0 1 0 0 0 0 0
3 2 13 1982 0 0 1 0 0 3 0 0 0 2940 0 0 0 0 1 0 0 0 0 0
4 2 13 1983 0 0 1 0 0 4 0 0 0 2960 0 0 0 0 1 0 0 0 0 0
5 2 13 1984 0 0 0 0 0 5 0 0 0 3071 0 0 0 0 1 0 0 0 0 1
6 2 13 1985 0 0 1 0 0 6 0 0 0 2864 0 0 0 0 1 0 1 0 0 0
7 2 13 1986 0 0 1 0 0 7 0 0 0 2994 0 0 0 0 1 0 1 0 0 0
8 2 13 1987 0 0 1 0 0 8 0 0 0 2640 0 0 0 0 1 0 1 0 0 0
9 1 17 1980 0 0 0 0 0 4 0 0 0 2484 0 0 0 0 1 0 1 0 0 0
10 1 17 1981 0 0 0 0 0 5 0 0 0 2804 0 0 0 0 1 0 1 0 0 0
11 1 17 1982 0 0 0 0 0 6 0 0 0 2530 0 0 0 0 1 0 1 0 0 0
12 1 17 1983 0 0 0 0 0 7 0 0 0 2340 0 0 0 0 1 0 1 0 0 0

The first lines and columns of union-wage.dta

This data set is used in Exercise L10.


